VRprofile: gene‐cluster‐detection‐based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria

&NA; VRprofile is a Web server that facilitates rapid investigation of virulence and antibiotic resistance genes, as well as extends these trait transfer‐related genetic contexts, in newly sequenced pathogenic bacterial genomes. The used backend database MobilomeDB was firstly built on sets of known gene cluster loci of bacterial type III/IV/VI/VII secretion systems and mobile genetic elements, including integrative and conjugative elements, prophages, class I integrons, IS elements and pathogenicity/antibiotic resistance islands. VRprofile is thus able to co‐localize the homologs of these conserved gene clusters using HMMer or BLASTp searches. With the integration of the homologous gene cluster search module with a sequence composition module, VRprofile has exhibited better performance for island‐like region predictions than the other widely used methods. In addition, VRprofile also provides an integrated Web interface for aligning and visualizing identified gene clusters with MobilomeDB‐archived gene clusters, or a variety set of bacterial genomes. VRprofile might contribute to meet the increasing demands of re‐annotations of bacterial variable regions, and aid in the real‐time definitions of disease‐relevant gene clusters in pathogenic bacteria of interest. VRprofile is freely available at http://bioinfo‐mml.sjtu.edu.cn/VRprofile.

[1]  Wilbert Bitter,et al.  Take five - Type VII secretion systems of Mycobacteria. , 2014, Biochimica et biophysica acta.

[2]  Ju Wang,et al.  Zisland Explorer: detect genomic islands by combining homogeneity and heterogeneity properties , 2016, Briefings Bioinform..

[3]  Matthew R. Laird,et al.  IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis , 2015, Nucleic Acids Res..

[4]  Hon Wai Leong,et al.  Computational methods for predicting genomic islands in microbial genomes , 2016, Computational and structural biotechnology journal.

[5]  Zixin Deng,et al.  Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a 'resistance-disarmed' model organism. , 2015, The Journal of antimicrobial chemotherapy.

[6]  E. Zankari,et al.  Comparison of the Web Tools ARG-ANNOT and ResFinder for Detection of Resistance Genes in Bacteria , 2014, Antimicrobial Agents and Chemotherapy.

[7]  Alpan Raval,et al.  Detection of genomic islands via segmental genome heterogeneity , 2009, Nucleic acids research.

[8]  Ewan M. Harrison,et al.  Deletion of TnAbaR23 Results in both Expected and Unexpected Antibiogram Changes in a Multidrug-Resistant Acinetobacter baumannii Strain , 2012, Antimicrobial Agents and Chemotherapy.

[9]  Ulrich Dobrindt,et al.  Genomic islands in pathogenic and environmental microorganisms , 2004, Nature Reviews Microbiology.

[10]  Zixin Deng,et al.  mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes , 2010, Nucleic Acids Res..

[11]  S. Salzberg,et al.  Using MUMmer to Identify Similar Regions in Large Sequence Sets , 2003, Current protocols in bioinformatics.

[12]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[13]  Jack A. M. Leunissen,et al.  Turning CFCs into salt. , 1996, Nucleic Acids Res..

[14]  Zhen Xu,et al.  ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria , 2011, Nucleic Acids Res..

[15]  Adam Zemla,et al.  MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications , 2006, Nucleic Acids Res..

[16]  R. Breitling,et al.  Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast , 2013, Molecular biology and evolution.

[17]  Fiona S. L. Brinkman,et al.  Evaluation of genomic island predictors using a comparative genomics approach , 2008, BMC Bioinformatics.

[18]  D. Fouts Phage_Finder: Automated identification and classification of prophage regions in complete bacterial genome sequences , 2006, Nucleic acids research.

[19]  Zixin Deng,et al.  SecReT4: a web-based bacterial type IV secretion system resource , 2012, Nucleic Acids Res..

[20]  Erik Kristiansson,et al.  BacMet: antibacterial biocide and metal resistance genes database , 2013, Nucleic Acids Res..

[21]  Jian Yang,et al.  VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors , 2011, Nucleic Acids Res..

[22]  J. Rolain,et al.  ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes , 2013, Antimicrobial Agents and Chemotherapy.

[23]  M. Cheung,et al.  Fighting Outbreaks with Bacterial Genomics: Case Review and Workflow Proposal , 2012, Public Health Genomics.

[24]  David S. Wishart,et al.  PHAST: A Fast Phage Search Tool , 2011, Nucleic Acids Res..

[25]  Stephen Lory,et al.  MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands , 2007, Nucleic Acids Res..

[26]  Manish Kumar,et al.  CBMAR: a comprehensive β-lactamase molecular annotation resource , 2014, Database J. Biol. Databases Curation.

[27]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[28]  H. Mizoguchi,et al.  Extensive Genomic Diversity in Pathogenic Escherichia coli and Shigella Strains Revealed by Comparative Genomic Hybridization Microarray , 2004, Journal of bacteriology.

[29]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[30]  Robert D. Finn,et al.  HMMER web server: 2015 update , 2015, Nucleic Acids Res..

[31]  Thomas Nussbaumer,et al.  EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems , 2015, Nucleic Acids Res..

[32]  Steven J. M. Jones,et al.  IslandPath: aiding detection of genomic islands in prokaryotes , 2003, Bioinform..

[33]  Ziding Zhang,et al.  BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors , 2015, Database J. Biol. Databases Curation.

[34]  Andrew C. Pawlowski,et al.  The Comprehensive Antibiotic Resistance Database , 2013, Antimicrobial Agents and Chemotherapy.

[35]  Carsten Damm,et al.  Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models , 2006, BMC Bioinformatics.

[36]  Matthew K. Waldor,et al.  Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow , 2010, Nature Reviews Microbiology.

[37]  Hon Wai Leong,et al.  GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome , 2016, J. Bioinform. Comput. Biol..

[38]  Patricia Siguier,et al.  ISfinder: the reference centre for bacterial insertion sequences , 2005, Nucleic Acids Res..

[39]  Young Ah Goo,et al.  A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. , 2014, Cell host & microbe.

[40]  Yufeng Yao,et al.  SecReT6: a web-based resource for type VI secretion systems found in bacteria. , 2015, Environmental microbiology.

[41]  Qing Zhang,et al.  T3DB: an integrated database for bacterial type III secretion system , 2012, BMC Bioinformatics.

[42]  António Correia,et al.  INTEGRALL: a database and search engine for integrons, integrases and gene cassettes , 2009, Bioinform..

[43]  Fiona S. L. Brinkman,et al.  Detecting genomic islands using bioinformatics approaches , 2010, Nature Reviews Microbiology.

[44]  Pedro Manuel Martínez-García,et al.  T346Hunter: A Novel Web-Based Tool for the Prediction of Type III, Type IV and Type VI Secretion Systems in Bacterial Genomes , 2015, PloS one.

[45]  Mihai Pop,et al.  ARDB—Antibiotic Resistance Genes Database , 2008, Nucleic Acids Res..

[46]  Dean Laslett,et al.  ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. , 2004, Nucleic acids research.

[47]  Fan Zhang,et al.  T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System , 2010, BMC Bioinformatics.

[48]  Young-Kyu Park,et al.  PAIDB v2.0: exploration and analysis of pathogenicity and resistance islands , 2014, Nucleic Acids Res..

[49]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[50]  R. Brosch,et al.  ESX/type VII secretion systems and their role in host-pathogen interaction. , 2009, Current opinion in microbiology.

[51]  Zixin Deng,et al.  dndDB: A Database Focused on Phosphorothioation of the DNA Backbone , 2009, PloS one.

[52]  Fernando de la Cruz,et al.  The Repertoire of ICE in Prokaryotes Underscores the Unity, Diversity, and Ubiquity of Conjugation , 2011, PLoS genetics.