On the Accelerated Failure Time Model for Current Status and Interval Censored Data

This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.

[1]  Xiaotong Shen,et al.  Linear Regression with Current Status Data , 2000 .

[2]  J. Wellner,et al.  Current Status Regression , 1999 .

[3]  I. James,et al.  Linear regression with censored data , 1979 .

[4]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[5]  R A Betensky,et al.  Using Conditional Logistic Regression to Fit Proportional Odds Models to Interval Censored Data , 2000, Biometrics.

[6]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[7]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[8]  Zhiliang Ying,et al.  Additive hazards regression with current status data , 1998 .

[9]  Ya'acov Ritov,et al.  Estimation in a Linear Regression Model with Censored Data , 1990 .

[10]  R. Wolfe,et al.  A semiparametric model for regression analysis of interval-censored failure time data. , 1985, Biometrics.

[11]  S C Shiboski,et al.  Generalized Additive Models for Current Status Data , 1998, Lifetime data analysis.

[12]  Anastasios A. Tsiatis,et al.  Regression with interval-censored data , 1995 .

[13]  Z. Ying,et al.  Rank-based inference for the accelerated failure time model , 2003 .

[14]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[15]  Gregg E. Dinse,et al.  Regression Analysis of Tumour Prevalence Data , 1983 .

[16]  G. Satten Rank-based inference in the proportional hazards model for interval censored data , 1996 .

[17]  Zhiliang Ying,et al.  Linear regression analysis of censored survival data based on rank tests , 1990 .

[18]  Anastasios A. Tsiatis,et al.  Computationally simple accelerated failure time regression for interval censored data , 2001 .

[19]  Jian Huang,et al.  Interval Censored Survival Data: A Review of Recent Progress , 1997 .

[20]  J. Wellner,et al.  Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .

[21]  M. Kosorok,et al.  The Profile Sampler , 2005 .

[22]  Jian Huang,et al.  Efficient Estimation for the Cox Model with Interval Censoring Efficient Estimation for the Cox Model with Interval Censoring , 1994 .

[23]  D. Finkelstein,et al.  A proportional hazards model for interval-censored failure time data. , 1986, Biometrics.

[24]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[25]  Charles J. Geyer,et al.  Computational Methods for Semiparametric Linear Regression with Censored Data , 1992 .

[26]  Xiaotong Shen,et al.  Proportional odds regression and sieve maximum likelihood estimation , 1998 .

[27]  A. J. Rossini,et al.  A Semiparametric Proportional Odds Regression Model for the Analysis of Current Status Data , 1996 .

[28]  Torben Martinussen,et al.  Efficient estimation in additive hazards regression with current status data , 2002 .

[29]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[30]  A. W. van der Vaart,et al.  On Profile Likelihood , 2000 .

[31]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[32]  T. Cai,et al.  Hazard Regression for Interval‐Censored Data with Penalized Spline , 2003, Biometrics.

[33]  A. Tsiatis Estimating Regression Parameters Using Linear Rank Tests for Censored Data , 1990 .

[34]  L. Tian,et al.  Statistical inference based on non-smooth estimating functions , 2004 .