On the Accelerated Failure Time Model for Current Status and Interval Censored Data
暂无分享,去创建一个
Tianxi Cai | Lu Tian | L. Tian | T. Cai
[1] Xiaotong Shen,et al. Linear Regression with Current Status Data , 2000 .
[2] J. Wellner,et al. Current Status Regression , 1999 .
[3] I. James,et al. Linear regression with censored data , 1979 .
[4] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[5] R A Betensky,et al. Using Conditional Logistic Regression to Fit Proportional Odds Models to Interval Censored Data , 2000, Biometrics.
[6] B. Turnbull. The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .
[7] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[8] Zhiliang Ying,et al. Additive hazards regression with current status data , 1998 .
[9] Ya'acov Ritov,et al. Estimation in a Linear Regression Model with Censored Data , 1990 .
[10] R. Wolfe,et al. A semiparametric model for regression analysis of interval-censored failure time data. , 1985, Biometrics.
[11] S C Shiboski,et al. Generalized Additive Models for Current Status Data , 1998, Lifetime data analysis.
[12] Anastasios A. Tsiatis,et al. Regression with interval-censored data , 1995 .
[13] Z. Ying,et al. Rank-based inference for the accelerated failure time model , 2003 .
[14] H. D. Brunk,et al. Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .
[15] Gregg E. Dinse,et al. Regression Analysis of Tumour Prevalence Data , 1983 .
[16] G. Satten. Rank-based inference in the proportional hazards model for interval censored data , 1996 .
[17] Zhiliang Ying,et al. Linear regression analysis of censored survival data based on rank tests , 1990 .
[18] Anastasios A. Tsiatis,et al. Computationally simple accelerated failure time regression for interval censored data , 2001 .
[19] Jian Huang,et al. Interval Censored Survival Data: A Review of Recent Progress , 1997 .
[20] J. Wellner,et al. Information Bounds and Nonparametric Maximum Likelihood Estimation , 1992 .
[21] M. Kosorok,et al. The Profile Sampler , 2005 .
[22] Jian Huang,et al. Efficient Estimation for the Cox Model with Interval Censoring Efficient Estimation for the Cox Model with Interval Censoring , 1994 .
[23] D. Finkelstein,et al. A proportional hazards model for interval-censored failure time data. , 1986, Biometrics.
[24] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[25] Charles J. Geyer,et al. Computational Methods for Semiparametric Linear Regression with Censored Data , 1992 .
[26] Xiaotong Shen,et al. Proportional odds regression and sieve maximum likelihood estimation , 1998 .
[27] A. J. Rossini,et al. A Semiparametric Proportional Odds Regression Model for the Analysis of Current Status Data , 1996 .
[28] Torben Martinussen,et al. Efficient estimation in additive hazards regression with current status data , 2002 .
[29] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[30] A. W. van der Vaart,et al. On Profile Likelihood , 2000 .
[31] J. Kalbfleisch. Statistical Inference Under Order Restrictions , 1975 .
[32] T. Cai,et al. Hazard Regression for Interval‐Censored Data with Penalized Spline , 2003, Biometrics.
[33] A. Tsiatis. Estimating Regression Parameters Using Linear Rank Tests for Censored Data , 1990 .
[34] L. Tian,et al. Statistical inference based on non-smooth estimating functions , 2004 .