Easy quantum groups and quantum subgroups of a semi-direct product quantum group
暂无分享,去创建一个
[1] S. Woronowicz. A remark on compact matrix quantum groups , 1991 .
[2] S. Popa,et al. On a class of $\mathrm{II}_1$ factors with at most one Cartan subalgebra , 2007, 0706.3623.
[3] Debashish Goswami. Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.
[4] J. Cooper,et al. Les Algebres d'Operateurs dans l'Espace Hilbertien , 1958, The Mathematical Gazette.
[5] Quanhua Xu,et al. Khintchine type inequalities for reduced free products and applications , 2005, math/0505302.
[6] T. Timmermann. An Invitation to Quantum Groups and Duality , 2008 .
[7] U. Haagerup. An example of a non nuclearC*-algebra, which has the metric approximation property , 1978 .
[8] Moritz Weber,et al. On the classification of easy quantum groups , 2012, 1201.4723.
[9] A. Sudbery. QUANTUM GROUPS AND THEIR REPRESENTATIONS (Texts and Monographs in Physics) , 2000 .
[10] Gizem Karaali. Book Review: An Invitation to Quantum Groups and Duality: From Hopf Algebras to Multiplicative Unitaries and Beyond , 2009 .
[11] Moritz Weber,et al. The combinatorics of an algebraic class of easy quantum groups , 2013, 1312.1497.
[12] R. Richardson. The International Congress of Mathematicians , 1932, Science.
[13] Teodor Banica,et al. Liberation of orthogonal Lie groups , 2008, 0808.2628.
[14] S. Woronowicz. Compact quantum groups , 2000 .
[15] R. Speicher,et al. Classification results for easy quantum groups , 2009, 0906.3890.
[16] B. Collins,et al. THE HYPEROCTAHEDRAL QUANTUM GROUP , 2007, math/0701859.
[17] J. Cooper,et al. Les Algebres d'Operateurs dans l'Espace Hilbertien , 1958 .
[18] S. Woronowicz,et al. Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups , 1988 .
[19] Stuart White,et al. The Haagerup property for locally compact quantum groups , 2013, 1303.3261.
[20] M. Rosso. Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif , 1990 .
[21] Shuzhou Wang,et al. Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.
[22] Shahn Majid,et al. Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction , 1990 .
[23] A. Ol'šanskiĭ. ON THE PROBLEM OF A FINITE BASIS OF IDENTITIES IN GROUPS , 1970 .
[24] A. Connes. On the cohomology of operator algebras , 1978 .
[25] Cyril Houdayer. Strongly solid group factors which are not interpolated free group factors , 2009, 0901.3866.
[26] B. Collins,et al. A Maximality Result for Orthogonal Quantum Groups , 2011, 1106.5467.
[27] H. Neumann. Varieties of Groups , 1967 .
[28] Shuzhou Wang,et al. Free products of compact quantum groups , 1995 .
[29] Z. Ruan. Amenability of Hopf von Neumann Algebras and Kac Algebras , 1996 .
[30] Thomas Sinclair. ON THE STRUCTURAL THEORY OF II1 FACTORS OF NEGATIVELY CURVED GROUPS SUR LA STRUCTURE DES FACTEURS DE TYPE II1 ASSOCIÉ AVEC LES GROUPES DE COURBURE NÉGATIVE , 2013 .
[31] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[32] A. Valette,et al. Groups with the Haagerup Property , 2001 .
[33] Theworkof Alain Connes. CLASSIFICATION OF INJECTIVE FACTORS , 1981 .
[34] T. Banica. Symmetries of a generic coaction , 1998, math/9811060.
[35] R. Speicher,et al. De Finetti theorems for easy quantum groups , 2009, 0907.3314.
[36] Moritz Weber,et al. The Full Classification of Orthogonal Easy Quantum Groups , 2013, 1312.3857.
[37] R. Speicher,et al. A Noncommutative de Finetti Theorem: Invariance under Quantum Permutations is Equivalent to Freeness with Amalgamation , 2008, 0807.0677.
[38] Sven Raum,et al. A Connection between Easy Quantum Groups, Varieties of Groups and Reflection Groups , 2012, 1212.4742.
[39] K. Schmüdgen,et al. Quantum Groups and Their Representations , 1998 .
[40] J. Neumann. Zur allgemeinen Theorie des Masses , 1929 .
[41] Extensions of locally compact quantum groups and the bicrossed product construction , 2001, math/0101133.
[42] B. H. Neumann. Identical relations in groups. I , 1937 .
[43] A. Connes,et al. Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .
[44] P. Jolissaint. HAAGERUP APPROXIMATION PROPERTY FOR FINITE VON NEUMANN ALGEBRAS , 2002 .
[45] Teodor Banica. Theorie des representations du groupe quantique compact libre O(n) , 1998 .
[46] U. Haagerup,et al. Approximation properties for group *-algebras and group von Neumann algebras , 1994 .
[47] S. Majid. Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the Classical Yang-Baxter Equations , 1991 .
[48] Nathanial P. Brown Narutaka Ozawa. C*-Algebras and Finite-Dimensional Approximations , 2008 .
[49] M. Choda. Group factors of the Haagerup type , 1983 .
[50] U. Haagerup,et al. Multipliers of the Fourier Algebras of Some Simple Lie Groups and Their Discrete Subgroups , 1985 .