Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study

Permutation entropy (PE) was recently introduced as a very fast and robust algorithm to detect dynamic complexity changes in time series. It was also suggested as a useful screening algorithm for epileptic events in EEG data. In the present work, we tested its efficacy on scalp EEG data recorded from three epileptic patients. With a receiver operating characteristics (ROC) analysis, we evaluated the separability of amplitude distributions of PE resulting from preictal and interictal phases. Moreover, the dependency of PE on vigilance state was tested by correlation coefficients. A good separability of interictal and preictal phase was found, nevertheless PE was shown to be sensitive to changes in vigilance state. The changes of PE during the preictal phase and at seizure onset coincided with changes in vigilance state, restricting its possible use for seizure prediction on scalp EEG; this finding however suggests its possible usefulness for an automated classification of vigilance states.SommarioÈ stato recentemente introdotto un algoritmo denominato Permutation Entropy (PE) a cui gli autori Bandt e Pompe (2002) attribuiscono due caratteristiche interessanti: la robustezza e la relativa rapidità di implementazione, proprietà entrambe utili nell’individuazione delle variazioni di complessità in serie temporali. Sulla scia di un iniziale ottimismo, la PE è stata suggerita come un possibile ausilio di ricerca su dati elettroencefalografici relativi a crisi epilettiche. Un primo obiettivo del nostro studio era testare l’efficacia dell’algoritmo, su dati elettroencefalografici di scalpo, registrati da 3 pazienti epilettici. Mediante l’applicazione di una ROC (Receiver Operating Characteristics) analisi abbiamo valutato la separabilità delle distribuzioni delle ampiezze di PE, rispettivamente per la fase preictale per quella interictale, su ogni registrazione di scalpo. Il secondo obiettivo è stato quello di indagare le eventuali correlazioni sussistenti fra l’andamento della PE e gli stati di vigilanza. Troviamo una buona separabilità fra le curve di dati preictali e interictali di ciascun paziente, seppure è evidente che la PE sia sensibile al cambio di stati di vigilanza, poiché spesso l’inizio di un evento accessuale era concomitante a cambi di stati di vigilanza. Alla luce di queste osservazioni, concludiamo che al momento non è possibile valutare l’affidabilità della PE come algoritmo predittore di crisi su dati elettroencefalografici di superficie, mentre appare sicuramente più attendibile come classificatore automatico degli stati di vigilanza.

[1]  P Kellaway,et al.  Sleep and Epilepsy , 1985, Epilepsia.

[2]  P. Coubes,et al.  The Relationship Between Sleep and Epilepsy in Frontal and Temporal Lobe Epilepsies: Practical and Physiopathologic Considerations , 1998, Epilepsia.

[3]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[4]  M. Sterman,et al.  Basic Concepts and Clinical Findings in the Treatment of Seizure Disorders with EEG Operant Conditioning , 2000, Clinical EEG.

[5]  Leonidas D. Iasemidis,et al.  Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures , 2001, J. Comb. Optim..

[6]  U. Strehl,et al.  Modification of Slow Cortical Potentials in Patients with Refractory Epilepsy: A Controlled Outcome Study , 2001, Epilepsia.

[7]  R. Savit,et al.  Understanding Dynamic State Changes in Temporal Lobe Epilepsy , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[8]  Lee M. Hively,et al.  Epileptic Event Forewarning From Scalp EEG , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[9]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[10]  L. Cohen,et al.  Transcranial magnetic stimulation for the treatment of seizures: A controlled study , 2002, Neurology.

[11]  B. Litt,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Review Prediction of Epileptic Seizures Are Seizures Predictable? Prediction of Epileptic Seizures , 2022 .

[12]  Ivan Osorio,et al.  Performance Reassessment of a Real‐time Seizure‐detection Algorithm on Long ECoG Series , 2002, Epilepsia.

[13]  J. Parra,et al.  Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity , 2003, Epilepsia.

[14]  A. Schulze-Bonhage,et al.  How well can epileptic seizures be predicted? An evaluation of a nonlinear method. , 2003, Brain : a journal of neurology.

[15]  S. Huffel,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[16]  J. Martinerie,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[17]  Robert Savit,et al.  Seizure prediction using scalp electroencephalogram , 2003, Experimental Neurology.

[18]  Lee M. Hively,et al.  Channel-consistent forewarning of epileptic events from scalp EEG , 2003, IEEE Transactions on Biomedical Engineering.

[19]  S. Huffel,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[20]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  [Epilepsy and sleep-wake cycle]. , 2004, Revista de neurologia.

[22]  A. Kraskov,et al.  On the predictability of epileptic seizures , 2005, Clinical Neurophysiology.

[23]  Xiaoli Li,et al.  Fractal spectral analysis of pre-epileptic seizures in terms of criticality , 2005, Journal of neural engineering.

[24]  Klaus Lehnertz,et al.  Seizure Anticipation: Do Mathematical Measures Correlate with Video‐EEG Evaluation? , 2005, Epilepsia.

[25]  L. Tarassenko,et al.  Linear and non-linear methods for automatic seizure detection in scalp electro-encephalogram recordings , 2002, Medical and Biological Engineering and Computing.

[26]  R. Savit,et al.  Seizure anticipation, states of consciousness and marginal predictability in temporal lobe epilepsy , 2006, Epilepsy Research.

[27]  Rainer Dahlhaus,et al.  Partial phase synchronization for multivariate synchronizing systems. , 2006, Physical review letters.

[28]  G. Ouyang,et al.  Predictability analysis of absence seizures with permutation entropy , 2007, Epilepsy Research.

[29]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.