Message-passing automata are expressively equivalent to EMSO logic

We study the expressiveness of finite message-passing automata with a priori unbounded FIFO channels and show them to capture exactly the class of MSC languages that are definable in existential monadic second-order logic interpreted over MSCs. Furthermore, we prove the monadic quantifier-alternation hierarchy over MSCs to be infinite and conclude that the class of MSC languages accepted by message-passing automata is not closed under complement.

[1]  Dietrich Kuske,et al.  Asynchronous Cellular Automata and Asynchronous Automata for Pomsets , 1998, CONCUR.

[2]  Anca Muscholl,et al.  Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces , 1999, MFCS.

[3]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[4]  Dietrich Kuske,et al.  Regular sets of infinite message sequence charts , 2003, Inf. Comput..

[5]  Rajeev Alur,et al.  Realizability and verification of MSC graphs , 2005, Theor. Comput. Sci..

[6]  Blaise Genest,et al.  L'odyssée des graphes de diagrammes de séquences ( MSC-Graphes) , 2004 .

[7]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[8]  Anca Muscholl,et al.  Bounded MSC communication , 2002, Inf. Comput..

[9]  Wolfgang Thomas,et al.  The monadic quantifier alternation hierarchy over graphs is infinite , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[10]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[11]  Madhavan Mukund,et al.  Synthesizing Distributed Finite-State Systems from MSCs , 2000, CONCUR.

[12]  Wolfgang Thomas On Logics, Tilings, and Automata , 1991, ICALP.

[13]  Paul Gastin,et al.  Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..

[14]  Wolfgang Thomas,et al.  Automata Theory on Trees and Partial Orders , 1997, TAPSOFT.

[15]  Hanêne Ben-Abdallah,et al.  Syntactic Detection of Process Divergence and Non-local Choice inMessage Sequence Charts , 1997, TACAS.

[16]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[17]  Nicole Schweikardt,et al.  The Monadic Quantifier Alternation Hierarchy over Grids and Graphs , 2002, Inf. Comput..

[18]  Rémi Morin,et al.  Recognizable Sets of Message Sequence Charts , 2002, STACS.

[19]  Rajeev Alur,et al.  Inference of message sequence charts , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[20]  Madhavan Mukund,et al.  Regular Collections of Message Sequence Charts , 2000, MFCS.

[21]  Anca Muscholl,et al.  Infinite-state high-level MSCs: Model-checking and realizability , 2002, J. Comput. Syst. Sci..

[22]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[23]  Madhavan Mukund,et al.  On Message Sequence Graphs and Finitely Generated Regular MSC Languages , 2000, ICALP.

[24]  Madhavan Mukund,et al.  A theory of regular MSC languages , 2005, Inf. Comput..

[25]  P. Madhusudan,et al.  Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs , 2001, ICALP.

[26]  Rajeev Alur,et al.  Model Checking of Message Sequence Charts , 1999, CONCUR.

[27]  Anca Muscholl,et al.  A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms , 2004, Developments in Language Theory.

[28]  Wolfgang Thomas,et al.  Elements of an automata theory over partial orders , 1997, Partial Order Methods in Verification.

[29]  Markus Lohrey,et al.  Realizability of high-level message sequence charts: closing the gaps , 2003, Theor. Comput. Sci..

[30]  P. Madhusudan,et al.  Beyond Message Sequence Graphs , 2001, FSTTCS.