Message-passing automata are expressively equivalent to EMSO logic
暂无分享,去创建一个
[1] Dietrich Kuske,et al. Asynchronous Cellular Automata and Asynchronous Automata for Pomsets , 1998, CONCUR.
[2] Anca Muscholl,et al. Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces , 1999, MFCS.
[3] Daniel Brand,et al. On Communicating Finite-State Machines , 1983, JACM.
[4] Dietrich Kuske,et al. Regular sets of infinite message sequence charts , 2003, Inf. Comput..
[5] Rajeev Alur,et al. Realizability and verification of MSC graphs , 2005, Theor. Comput. Sci..
[6] Blaise Genest,et al. L'odyssée des graphes de diagrammes de séquences ( MSC-Graphes) , 2004 .
[7] Ludwig Staiger,et al. Ω-languages , 1997 .
[8] Anca Muscholl,et al. Bounded MSC communication , 2002, Inf. Comput..
[9] Wolfgang Thomas,et al. The monadic quantifier alternation hierarchy over graphs is infinite , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[10] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[11] Madhavan Mukund,et al. Synthesizing Distributed Finite-State Systems from MSCs , 2000, CONCUR.
[12] Wolfgang Thomas. On Logics, Tilings, and Automata , 1991, ICALP.
[13] Paul Gastin,et al. Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..
[14] Wolfgang Thomas,et al. Automata Theory on Trees and Partial Orders , 1997, TAPSOFT.
[15] Hanêne Ben-Abdallah,et al. Syntactic Detection of Process Divergence and Non-local Choice inMessage Sequence Charts , 1997, TACAS.
[16] C. C. Elgot. Decision problems of finite automata design and related arithmetics , 1961 .
[17] Nicole Schweikardt,et al. The Monadic Quantifier Alternation Hierarchy over Grids and Graphs , 2002, Inf. Comput..
[18] Rémi Morin,et al. Recognizable Sets of Message Sequence Charts , 2002, STACS.
[19] Rajeev Alur,et al. Inference of message sequence charts , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.
[20] Madhavan Mukund,et al. Regular Collections of Message Sequence Charts , 2000, MFCS.
[21] Anca Muscholl,et al. Infinite-state high-level MSCs: Model-checking and realizability , 2002, J. Comput. Syst. Sci..
[22] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[23] Madhavan Mukund,et al. On Message Sequence Graphs and Finitely Generated Regular MSC Languages , 2000, ICALP.
[24] Madhavan Mukund,et al. A theory of regular MSC languages , 2005, Inf. Comput..
[25] P. Madhusudan,et al. Reasoning about Sequential and Branching Behaviours of Message Sequence Graphs , 2001, ICALP.
[26] Rajeev Alur,et al. Model Checking of Message Sequence Charts , 1999, CONCUR.
[27] Anca Muscholl,et al. A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms , 2004, Developments in Language Theory.
[28] Wolfgang Thomas,et al. Elements of an automata theory over partial orders , 1997, Partial Order Methods in Verification.
[29] Markus Lohrey,et al. Realizability of high-level message sequence charts: closing the gaps , 2003, Theor. Comput. Sci..
[30] P. Madhusudan,et al. Beyond Message Sequence Graphs , 2001, FSTTCS.