Algorithms to compute the largest invariant set contained in an algebraic set for continuous-time and discrete-time nonlinear systems

In this paper, some computational tools are proposed to determine the largest invariant set, with respect to either a continuous-time or a discrete-time system, that is contained in an algebraic set. In particular, it is shown that if the vector field governing the dynamics of the system is polynomial and the considered analytic set is a variety, then algorithms from algebraic geometry can be used to solve the considered problem. Examples of applications of the method ( spanning from the characterization of the stability to the computation of the zero dynamics ) are given all throughout the paper.

[1]  Iven M. Y. Mareels,et al.  Controllability of structured polynomial systems , 1999, IEEE Trans. Autom. Control..

[2]  S. Elaydi An introduction to difference equations , 1995 .

[3]  Jack K. Hale,et al.  Dynamical systems and stability , 1969 .

[4]  Laura Menini,et al.  Algebraic Methods for Multiobjective Optimal Design of Control Feedbacks for Linear Systems , 2018, IEEE Transactions on Automatic Control.

[5]  Andrew R. Teel,et al.  Lyapunov conditions certifying stability and recurrence for a class of stochastic hybrid systems , 2013, Annu. Rev. Control..

[6]  A. Isidori Nonlinear Control Systems , 1985 .

[7]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time Systems , 1960 .

[8]  L. Menini,et al.  Symmetries and Semi-invariants in the Analysis of Nonlinear Systems , 2011 .

[9]  David Angeli,et al.  Nonlinear norm-observability notions and stability of switched systems , 2005, IEEE Transactions on Automatic Control.

[10]  Andrew R. Teel,et al.  Smooth Lyapunov functions and robustness of stability for difference inclusions , 2004, Syst. Control. Lett..

[11]  Andrea Bacciotti,et al.  Some remarks about stability of nonlinear discrete-time control systems , 2001 .

[12]  Ming Cao,et al.  COORDINATION OF AN ASYNCHRONOUS MULTI-AGENT SYSTEM VIA AVERAGING , 2005 .

[13]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[14]  Andres Marcos,et al.  Robust estimations of the Region of Attraction using invariant sets , 2019, J. Frankl. Inst..

[15]  Laura Menini,et al.  Algebraic Certificates of (Semi)Definiteness for Polynomials Over Fields Containing the Rationals , 2018, IEEE Transactions on Automatic Control.

[16]  J. P. Lasalle Stability theory for ordinary differential equations. , 1968 .

[17]  J. Faugère,et al.  On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .

[18]  Alberto Isidori,et al.  The zero dynamics of a nonlinear system: FrOm The Origin To the latest progresses of a long successful story , 2011, Proceedings of the 30th Chinese Control Conference.

[19]  Krister Forsman,et al.  Constructive algebraic geometry in nonlinear control , 1990, 29th IEEE Conference on Decision and Control.

[20]  E. Voit,et al.  Recasting nonlinear differential equations as S-systems: a canonical nonlinear form , 1987 .

[21]  V. Sundarapandian,et al.  An invariance principle for discrete-time nonlinear systems , 2003, Appl. Math. Lett..

[22]  吉澤 太郎 An Invariance Principle in the Theory of Stability (常微分方程式及び函数微分方程式研究会報告集) , 1968 .

[23]  Wei Lin,et al.  Zero-state observability and stability of discrete-time nonlinear systems, , 1995, Autom..

[24]  Luís F. C. Alberto,et al.  An Invariance Principle for Nonlinear Discrete Autonomous Dynamical Systems , 2007, IEEE Transactions on Automatic Control.

[25]  Laura Menini,et al.  Switching Signal Estimator Design for a Class of Elementary Systems , 2016, IEEE Transactions on Automatic Control.

[26]  Magali Bardet,et al.  On the Complexity of a Grobner Basis Algorithm , 2005 .

[27]  Francesco Bullo,et al.  LaSalle Invariance Principle for Discrete-time Dynamical Systems: A Concise and Self-contained Tutorial , 2017, ArXiv.

[28]  A. Morse,et al.  Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach , 1970 .

[29]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[30]  J. P. Lasalle The stability and control of discrete processes , 1986 .

[31]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[32]  Zbigniew Bartosiewicz,et al.  Algebraic criteria of global observability of polynomial systems , 2016, Autom..

[33]  Corrado Possieri,et al.  Motion Planning, Formation Control and Obstacle Avoidance for Multi-Agent Systems , 2018, 2018 IEEE Conference on Control Technology and Applications (CCTA).

[34]  Yujiro Inouye On the observability of autonomous nonlinear systems , 1977 .

[35]  James Anderson,et al.  Region of Attraction Estimation Using Invariant Sets and Rational Lyapunov Functions , 2016, Autom..

[36]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: II—Discrete-Time Systems , 1960 .

[37]  Antonio Tornambè,et al.  On polynomial vector fields having a given affine variety as attractive and invariant set: application to robotics , 2015, Int. J. Control.

[38]  Laura Menini,et al.  A symbolic algorithm to compute immersions of polynomial systems into linear ones up to an output injection , 2020, J. Symb. Comput..

[39]  Tamer Basar An Invariance Principle in the Theory of Stability , 2001 .

[40]  Z. Bartosiewicz Local observability of nonlinear systems , 1995 .

[41]  A. Isidori,et al.  Nonlinear zero distributions , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[42]  Daniela Fischer Differential Equations Dynamical Systems And An Introduction To Chaos , 2016 .