Pathways for Alkali Ion Transport in Mold Compounds

[1]  J. Fitoussi,et al.  Bi‐phasic water diffusion in sheet molding compound composite , 2020, Journal of Applied Polymer Science.

[2]  Francesco Ciucci,et al.  Modeling electrochemical impedance spectroscopy , 2019, Current Opinion in Electrochemistry.

[3]  K. Weitzel,et al.  Ionic work functions of alkali aluminosilicates – Correlations with structural and energetic landscapes , 2019, International Journal of Mass Spectrometry.

[4]  A. Gnudi,et al.  Characterization of dielectric properties and conductivity in encapsulation materials with high insulating filler contents , 2018, IEEE Transactions on Dielectrics and Electrical Insulation.

[5]  Linda F. Nazar,et al.  New horizons for inorganic solid state ion conductors , 2018 .

[6]  K. Weitzel,et al.  Remote access to electrical conductivity by charge attachment from an ambient pressure plasma , 2018, Applied Physics Letters.

[7]  L. Müller,et al.  Experimental Study of Moisture Ingress in First and Second Levels of Electronic Housings , 2018, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[8]  J. Maier,et al.  Ion conduction and redistribution at grain boundaries in oxide systems , 2017 .

[9]  M. Nelhiebel,et al.  Measuring Sodium Migration in Mold Compounds Using a Sodium Amalgam Electrode as an Infinite Source , 2017, 2017 IEEE 67th Electronic Components and Technology Conference (ECTC).

[10]  K. Thornton,et al.  Charge attachment induced transport - bulk and grain boundary diffusion of potassium in PrMnO3. , 2017, Physical chemistry chemical physics : PCCP.

[11]  Jiang Zhou,et al.  In-situ characterization of moisture absorption and hygroscopic swelling of silicone/phosphor composite film and epoxy mold compound in LED packaging , 2017, 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE).

[12]  B. Han,et al.  Moisture Ingress, Behavior, and Prediction Inside Semiconductor Packaging: A Review , 2017 .

[13]  M. Schäfer,et al.  Competing K+- and Ca++-ion transport in calcium-potassium-phosphate-glasses , 2016 .

[14]  Y. Huang,et al.  Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications , 2016 .

[15]  Jinsong Huang,et al.  Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films , 2016 .

[16]  Hideaki Sasajima,et al.  Epoxy molding compound for fingerprint sensor , 2016, 2016 International Conference on Electronics Packaging (ICEP).

[17]  K. Pickering,et al.  A review of recent developments in natural fibre composites and their mechanical performance , 2016 .

[18]  M. Schäfer,et al.  Bombardment induced ion transport - part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films. , 2016, Physical chemistry chemical physics : PCCP.

[19]  M. Nelhiebel,et al.  Investigation of Electric Field Induced Ion Migration in Semiconductor Encapsulation Materials without the Interference of Electron Conductivity , 2016 .

[20]  Q. Ma,et al.  Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 , 2015 .

[21]  M. Schäfer,et al.  Highways for ions in polymers - 3D–imaging of electrochemical interphase formation , 2015 .

[22]  Jing Wang,et al.  Development of Mold Compounds With Ultralow Coefficient of Thermal Expansion and High Glass Transition Temperature for Fan-Out Wafer-Level Packaging , 2015, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[23]  Li Shi,et al.  Emerging challenges and materials for thermal management of electronics , 2014 .

[24]  M. Schäfer,et al.  Bombardment induced ion transport--part III: experimental potassium ion conductivities in poly(para-xylylene). , 2013, Physical chemistry chemical physics : PCCP.

[25]  A. Błędzki,et al.  Biocomposites reinforced with natural fibers: 2000–2010 , 2012 .

[26]  Yu Bai,et al.  Fabrication and characterization of aluminum nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic packaging , 2012 .

[27]  M. Wiencierz,et al.  Systematics of ionic transport and pair formation in amorphous PEO–NaI polymer electrolytes , 2012 .

[28]  M. Schäfer,et al.  Bombardment induced ion transport. Part I: Numerical investigation of bombardment induced ion transport through glasses and membranes on the basis of the Nernst-Planck-Poisson equations. , 2011, Physical chemistry chemical physics : PCCP.

[29]  B. Roling,et al.  Bombardment induced ion transport--part II. Experimental potassium ion conductivities in borosilicate glass. , 2011, Physical chemistry chemical physics : PCCP.

[30]  Alberto Somoza,et al.  Measurement of the Young's modulus in particulate epoxy composites using the impulse excitation technique , 2010 .

[31]  C. Pietzonka,et al.  Field effects in alkali ion emitters: Transition from Langmuir–Child to Schottky regime , 2010 .

[32]  P. Heitjans,et al.  Ion transport and diffusion in nanocrystalline and glassy ceramics , 2008 .

[33]  Manfred Martin,et al.  Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries. , 2008, Physical chemistry chemical physics : PCCP.

[34]  Rainer Tilgner,et al.  Measurement of the Young's modulus of moulding compounds at elevated temperatures with a resonance method , 2005 .

[35]  M. Misra,et al.  Novel Biocomposites Sheet Molding Compounds for Low Cost Housing Panel Applications , 2005 .

[36]  Jiajun Wang,et al.  Preparation and the properties of PMR‐type polyimide composites with aluminum nitride , 2003 .

[37]  M. Pecht,et al.  Ion transport in encapsulants used in microcircuit packaging , 2003 .

[38]  P. Heitjans,et al.  Diffusion and ionic conduction in nanocrystalline ceramics , 2003 .

[39]  P. Heitjans,et al.  Diffusion and Ionic Conduction in Nanocrystalline Ceramics , 2003 .

[40]  Chun-Shan Wang,et al.  Modification of epoxy resin with siloxane containing phenol aralkyl epoxy resin for electronic encapsulation application , 2001 .

[41]  H. Ishida,et al.  Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins , 2000 .

[42]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[43]  Yong-Seog Kim,et al.  Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation , 1999 .

[44]  Chun-Shan Wang,et al.  Modification of epoxy resins with polysiloxane thermoplastic polyurethane for electronic encapsulation: 1 , 1996 .

[45]  Kurt Binder,et al.  Interdiffusion and self‐diffusion in polymer mixtures: A Monte Carlo study , 1991 .

[46]  Masatsugu Ogata,et al.  Epoxy Molding Compounds as Encapsulation Materials for Microelectronic Devices , 1989, Speciality Polymers / Polymer Physics.

[47]  Ian D. Raistrick,et al.  Application of Impedance Spectroscopy to Materials Science , 1986 .

[48]  J. C. Fisher Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion , 1951 .