Shear-assisted water-fluxed melting and AFC processes in the foreland of the Early Paleozoic Famatinian orogen: petrogenesis of leucogranites and pegmatites from the Sierras de Córdoba, Argentina
暂无分享,去创建一个
J. Coniglio | F. Hauff | L. Pinotti | E. Aragón | M. Demartis | S. Jung | F. D’Eramo | M. A. Boffadossi | J. Coniglio | M. Muratori
[1] L. Pinotti,et al. Constraining the timing and evolution of a long-lived tectonic boundary: an example from the Early Paleozoic, Argentina , 2021 .
[2] F. Barra,et al. Geology, petrology and geochronology of sierra Valle Fértil - La Huerta batholith: Implications for the construction of a middle-crust magmatic-arc section , 2020 .
[3] F. Jourdan,et al. Prolonged Movement on a > 10‐km‐Wide Thrust During Early Paleozoic Orogens in the Gondwana Margin of NW Argentina , 2019, Tectonics.
[4] R. Gil,et al. Las Cañas plutonic complex: Geodynamic implications during the Famatinian magmatism in northeast of Sierra de San Luis, Argentina , 2019, Journal of South American Earth Sciences.
[5] Shoufa Lin,et al. Fluid-present anatexis of Neoarchean tonalite and amphibolite in the Western Shandong Province , 2019, Lithos.
[6] M. Basei,et al. A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana , 2018, Earth-Science Reviews.
[7] R. Weinberg,et al. Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana , 2018, Earth-Science Reviews.
[8] R. Pankhurst,et al. Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? , 2018 .
[9] L. Pinotti,et al. Famatinian inner arc: Petrographical observations and geochronological constraints on pegmatites and leucogranites of the Comechingones pegmatitic field (Sierras de Córdoba, Argentina) , 2017 .
[10] R. Weinberg,et al. A major mid-crustal decollement of the Paleozoic convergent margin of western Gondwana: The Guacha Corral shear zone, Argentina , 2017 .
[11] N. Suzaño,et al. The role of magma mixing in the evolution of the Early Paleozoic calc-alkaline granitoid suites. Eastern magmatic belt, Puna, NW Argentina , 2017 .
[12] M. Ducea,et al. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina , 2017 .
[13] J. Crowley,et al. Ultrafast magmatic buildup and diversification to produce continental crust during subduction , 2017, Geology.
[14] R. Powell,et al. High‐grade metamorphism and partial melting of basic and intermediate rocks , 2016 .
[15] Peter A. Cawood,et al. Geochronological, elemental and Sr-Nd-Hf-O isotopic constraints on the petrogenesis of the Triassic post-collisional granitic rocks in NW Thailand and its Paleotethyan implications , 2016 .
[16] L. Pinotti,et al. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina) , 2016 .
[17] A. Müller,et al. The synorogenic pegmatitic quartz veins of the Guacha Corral Shear zone (Sierra de Comechingones, Argentina): A textural, chemical, isotopic, cathodoluminescence and fluid inclusion study , 2016 .
[18] R. Pankhurst,et al. Isotope (Sr, C) and U–Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times , 2016 .
[19] R. Pankhurst,et al. Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): New insights into the mantle contribution , 2016 .
[20] M. Ducea,et al. A MASH Zone Revealed: the Mafic Complex of the Sierra Valle Fértil , 2015 .
[21] S. Radice,et al. MICROFÁBRICAS DE DEFORMACIÓN DEL BASAMENTO METAMÓRFICO, SECTOR CENTRO-ORIENTAL DE LA SIERRA DE COMECHINGONES, CÓRDOBA , 2015 .
[22] R. Weinberg,et al. Water-fluxed melting of the continental crust: A review , 2015 .
[23] P. Alfonso,et al. EXTREME F ACTIVITIES IN LATE PEGMATITIC EVENTS AS A KEY FACTOR FOR LILE AND HFSE ENRICHMENT: THE ÁNGEL PEGMATITE, CENTRAL ARGENTINA , 2014 .
[24] R. Pankhurst,et al. The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina , 2014 .
[25] A. Castro. The off-crust origin of granite batholiths , 2014 .
[26] Yuyoung Lee,et al. Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea , 2013 .
[27] L. Pinotti,et al. Granite emplacement by crustal boudinage: example of the Calmayo and El Hongo plutons (Córdoba, Argentina) , 2013 .
[28] Changqian Ma,et al. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth , 2013 .
[29] R. Pankhurst,et al. Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana , 2013 .
[30] R. Pankhurst,et al. The Sierra Norte-Ambargasta batholith: Late Ediacaran–Early Cambrian magmatism associated with Pampean transpressional tectonics , 2013 .
[31] R. Pankhurst,et al. Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina , 2012 .
[32] D. Pearson,et al. Detrital zircon U–Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc , 2012 .
[33] M. Ducea,et al. Geological, Petrological and Geochemical Evidence for Progressive Construction of an Arc Crustal Section, Sierra de Valle Fertil, Famatinian Arc, Argentina , 2012 .
[34] A. Stepanov,et al. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks , 2012 .
[35] G. Stevens,et al. What controls chemical variation in granitic magmas , 2012 .
[36] J. Vervoort,et al. Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, NW Argentina , 2012 .
[37] R. Weinberg,et al. The dike swarm of the Karakoram shear zone, Ladakh, NW India: Linking granite source to batholith , 2012 .
[38] G. Stevens,et al. The enigmatic sources of I-type granites: The peritectic connexion , 2011 .
[39] L. Pinotti,et al. Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Córdoba, Argentina) , 2011 .
[40] M. Larrovere,et al. Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco , 2011 .
[41] K. Haase,et al. On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge (5–11°S): Shallow or deep recycling of ocean crust and/or intraplate volcanism? , 2011 .
[42] S. Siegesmund,et al. Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data , 2011 .
[43] S. Siegesmund,et al. The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview , 2011 .
[44] S. Siegesmund,et al. Post-Pampean cooling and the uplift of the Sierras Pampeanas in the west of Córdoba (Central Argentina) , 2010 .
[45] U. Andersson,et al. Hybridization of granitic magmas in the source: The origin of the Karakoram Batholith, Ladakh, NW India , 2010 .
[46] Donna L. Whitney,et al. Abbreviations for names of rock-forming minerals , 2010 .
[47] R. Pankhurst,et al. New SHRIMP U-Pb data from the Famatina Complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina , 2008 .
[48] Geordie Mark,et al. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone, Ladakh, NW India , 2008 .
[49] M. Pimentel,et al. Neoproterozoic backarc basin: Sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina , 2007 .
[50] J. Saavedra,et al. Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids , 2007 .
[51] L. Pinotti,et al. Coalescence of lateral spreading magma ascending through dykes: a mechanism to form a granite canopy (El Hongo pluton, Sierras Pampeanas, Argentina) , 2006, Journal of the Geological Society.
[52] R. Frei,et al. The Mesoproterozoic Midsommersø dolerites and associated high-silica intrusions, North Greenland: crustal melting, contamination and hydrothermal alteration , 2006 .
[53] L. Pinotti,et al. Structural interplay between plutons during the construction of a batholith (Cerro Aspero batholith, Sierras de Córdoba, Argentina) , 2006 .
[54] P. Černý,et al. THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .
[55] V. Troll,et al. Sr and Nd isotope evidence for successive crustal contamination of Slieve Gullion ring-dyke magmas, Co. Armagh, Ireland , 2005, Geological Magazine.
[56] P. Asimow,et al. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source , 2005 .
[57] P. Asimow,et al. Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California , 2005 .
[58] J. Otamendi,et al. Cambrian to Devonian Geologic Evolution of the Sierra de Comechingones, Eastern Sierras Pampeanas, Argentina: Evidence for the Development and Exhumation of Continental Crust on the Proto-Pacific Margin of Gondwana , 2004 .
[59] W. Collins,et al. A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example , 2004 .
[60] R. Pankhurst,et al. K-bentonites in the Argentine Precordillera contemporaneous with rhyolite volcanism in the Famatinian Arc , 2004, Journal of the Geological Society.
[61] J. Schwartz,et al. Provenance of a late Proterozoic–early Cambrian basin, Sierras de Córdoba, Argentina , 2004 .
[62] R. Martino. Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una reseña general , 2003 .
[63] C. Simpson,et al. High strain-rate deformation fabrics characterize a kilometers-thick Paleozoic fault zone in the Eastern Sierras Pampeanas, central Argentina , 2003 .
[64] L. Pinotti,et al. Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Aspero batholith, Sierras Pampeanas de Córdoba, Argentina , 2002 .
[65] R. Larsen. THE DISTRIBUTION OF RARE-EARTH ELEMENTS IN K-FELDSPAR AS AN INDICATOR OF PETROGENETIC PROCESSES IN GRANITIC PEGMATITES: EXAMPLES FROM TWO PEGMATITE FIELDS IN SOUTHERN NORWAY , 2002 .
[66] J. Sigoyer,et al. Sm Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks , 2001 .
[67] A. Castro,et al. Determination of the fluid–absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar , 2001 .
[68] B. Chappell,et al. Two contrasting granite types: 25 years later , 2001 .
[69] R. Pankhurst,et al. Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[70] R. K. O’nions,et al. Monazite chemical composition: some implications for monazite geochronology , 1999 .
[71] Demichelis,et al. Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Córdoba, Argentina , 1999 .
[72] P. Möller,et al. The Effect of Hydrothermal Alteration on the Sr and Nd Isotopic Signatures of the Barra do Itapirapuã Carbonatite, Southern Brazil , 1999, The Journal of Geology.
[73] A. Camacho,et al. Uranium-lead dating of felsic magmatic cycles in the southern Sierras Pampeanas, Argentina: Implications for the tectonic development of the proto-Andean Gondwana margin , 1999 .
[74] R. Pankhurst. The Proto-Andean Margin of Gondwana , 1998 .
[75] J. Saavedra,et al. Early evolution of the Proto-Andean margin of South America , 1998 .
[76] I. Pascua. Las rocas igneas y metamorficas de la sierra de los llanos, la rioja, argentina. Evolucion famatiniana de un sector del basamento pre-mesozoico andino , 1998 .
[77] A. Camacho,et al. U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin , 1998, Geological Society, London, Special Publications.
[78] R. Pankhurst,et al. The proto-Andean margin of Gondwana: an introduction , 1998, Geological Society, London, Special Publications.
[79] A. Sato,et al. The granitoids of the Sierra de San Luis , 1998, Geological Society, London, Special Publications.
[80] J. Saavedra,et al. The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin , 1998, Geological Society, London, Special Publications.
[81] A. Whittington,et al. Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas , 1997, Mineralogical Magazine.
[82] B. Barbarin. Genesis of the two main types of peraluminous granitoids , 1996 .
[83] K. Winther. An experimentally based model for the origin of tonalitic and trondhjemitic melts , 1996 .
[84] W. Collins. Lachlan Fold Belt granitoids: products of three-component mixing , 1996, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[85] B. Coira,et al. Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes , 1996 .
[86] E. Watson,et al. Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .
[87] T. Dunn,et al. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites , 1994 .
[88] P. Wyllie,et al. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time , 1994 .
[89] J. Tepper,et al. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity , 1993 .
[90] J. Davidson,et al. Volcanic rocks from the Bolivian Altiplano: Insights into crustal structure, contamination, and magma genesis in the central Andes , 1992 .
[91] B. Chappell,et al. I- and S-type granites in the Lachlan Fold Belt , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[92] P. Wyllie,et al. Dehydration-melting of solid amphibolite at 10 kbar: Textural development, liquid interconnectivity and applications to the segregation of magmas , 1991 .
[93] E. Watson,et al. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites , 1991 .
[94] G. Lofgren,et al. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb , 1991 .
[95] T. Rushmer. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions , 1991 .
[96] W. Hildreth,et al. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field , 1991 .
[97] F. Cesbron. Mineralogy of the Rare-Earth Elements , 1989 .
[98] T. Druitt,et al. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon , 1988 .
[99] R. Allmendinger,et al. The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation , 1986 .
[100] W. Boynton. Cosmochemistry of the rare earth elements: meteorite studies. , 1984 .
[101] M. McCulloch,et al. Nd isotopic characteristics of S- and I-type granites , 1982 .
[102] B. Doe,et al. Plumbotectonics-the model , 1981 .
[103] D. DePaolo. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization , 1981 .
[104] P. Hamilton,et al. Neodymium and Strontium Isotope Evidence for Crustal Contamination of Continental Volcanics , 1978, Science.
[105] B. Chappell,et al. Two contrasting granite types , 1974 .
[106] J. A. Philpotts,et al. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis , 1970 .
[107] J. A. Philpotts,et al. Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II , 1970 .