Shear-assisted water-fluxed melting and AFC processes in the foreland of the Early Paleozoic Famatinian orogen: petrogenesis of leucogranites and pegmatites from the Sierras de Córdoba, Argentina

[1]  L. Pinotti,et al.  Constraining the timing and evolution of a long-lived tectonic boundary: an example from the Early Paleozoic, Argentina , 2021 .

[2]  F. Barra,et al.  Geology, petrology and geochronology of sierra Valle Fértil - La Huerta batholith: Implications for the construction of a middle-crust magmatic-arc section , 2020 .

[3]  F. Jourdan,et al.  Prolonged Movement on a > 10‐km‐Wide Thrust During Early Paleozoic Orogens in the Gondwana Margin of NW Argentina , 2019, Tectonics.

[4]  R. Gil,et al.  Las Cañas plutonic complex: Geodynamic implications during the Famatinian magmatism in northeast of Sierra de San Luis, Argentina , 2019, Journal of South American Earth Sciences.

[5]  Shoufa Lin,et al.  Fluid-present anatexis of Neoarchean tonalite and amphibolite in the Western Shandong Province , 2019, Lithos.

[6]  M. Basei,et al.  A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana , 2018, Earth-Science Reviews.

[7]  R. Weinberg,et al.  Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana , 2018, Earth-Science Reviews.

[8]  R. Pankhurst,et al.  Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? , 2018 .

[9]  L. Pinotti,et al.  Famatinian inner arc: Petrographical observations and geochronological constraints on pegmatites and leucogranites of the Comechingones pegmatitic field (Sierras de Córdoba, Argentina) , 2017 .

[10]  R. Weinberg,et al.  A major mid-crustal decollement of the Paleozoic convergent margin of western Gondwana: The Guacha Corral shear zone, Argentina , 2017 .

[11]  N. Suzaño,et al.  The role of magma mixing in the evolution of the Early Paleozoic calc-alkaline granitoid suites. Eastern magmatic belt, Puna, NW Argentina , 2017 .

[12]  M. Ducea,et al.  U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina , 2017 .

[13]  J. Crowley,et al.  Ultrafast magmatic buildup and diversification to produce continental crust during subduction , 2017, Geology.

[14]  R. Powell,et al.  High‐grade metamorphism and partial melting of basic and intermediate rocks , 2016 .

[15]  Peter A. Cawood,et al.  Geochronological, elemental and Sr-Nd-Hf-O isotopic constraints on the petrogenesis of the Triassic post-collisional granitic rocks in NW Thailand and its Paleotethyan implications , 2016 .

[16]  L. Pinotti,et al.  Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina) , 2016 .

[17]  A. Müller,et al.  The synorogenic pegmatitic quartz veins of the Guacha Corral Shear zone (Sierra de Comechingones, Argentina): A textural, chemical, isotopic, cathodoluminescence and fluid inclusion study , 2016 .

[18]  R. Pankhurst,et al.  Isotope (Sr, C) and U–Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times , 2016 .

[19]  R. Pankhurst,et al.  Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): New insights into the mantle contribution , 2016 .

[20]  M. Ducea,et al.  A MASH Zone Revealed: the Mafic Complex of the Sierra Valle Fértil , 2015 .

[21]  S. Radice,et al.  MICROFÁBRICAS DE DEFORMACIÓN DEL BASAMENTO METAMÓRFICO, SECTOR CENTRO-ORIENTAL DE LA SIERRA DE COMECHINGONES, CÓRDOBA , 2015 .

[22]  R. Weinberg,et al.  Water-fluxed melting of the continental crust: A review , 2015 .

[23]  P. Alfonso,et al.  EXTREME F ACTIVITIES IN LATE PEGMATITIC EVENTS AS A KEY FACTOR FOR LILE AND HFSE ENRICHMENT: THE ÁNGEL PEGMATITE, CENTRAL ARGENTINA , 2014 .

[24]  R. Pankhurst,et al.  The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina , 2014 .

[25]  A. Castro The off-crust origin of granite batholiths , 2014 .

[26]  Yuyoung Lee,et al.  Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea , 2013 .

[27]  L. Pinotti,et al.  Granite emplacement by crustal boudinage: example of the Calmayo and El Hongo plutons (Córdoba, Argentina) , 2013 .

[28]  Changqian Ma,et al.  Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth , 2013 .

[29]  R. Pankhurst,et al.  Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana , 2013 .

[30]  R. Pankhurst,et al.  The Sierra Norte-Ambargasta batholith: Late Ediacaran–Early Cambrian magmatism associated with Pampean transpressional tectonics , 2013 .

[31]  R. Pankhurst,et al.  Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina , 2012 .

[32]  D. Pearson,et al.  Detrital zircon U–Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc , 2012 .

[33]  M. Ducea,et al.  Geological, Petrological and Geochemical Evidence for Progressive Construction of an Arc Crustal Section, Sierra de Valle Fertil, Famatinian Arc, Argentina , 2012 .

[34]  A. Stepanov,et al.  Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks , 2012 .

[35]  G. Stevens,et al.  What controls chemical variation in granitic magmas , 2012 .

[36]  J. Vervoort,et al.  Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, NW Argentina , 2012 .

[37]  R. Weinberg,et al.  The dike swarm of the Karakoram shear zone, Ladakh, NW India: Linking granite source to batholith , 2012 .

[38]  G. Stevens,et al.  The enigmatic sources of I-type granites: The peritectic connexion , 2011 .

[39]  L. Pinotti,et al.  Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Córdoba, Argentina) , 2011 .

[40]  M. Larrovere,et al.  Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco , 2011 .

[41]  K. Haase,et al.  On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge (5–11°S): Shallow or deep recycling of ocean crust and/or intraplate volcanism? , 2011 .

[42]  S. Siegesmund,et al.  Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data , 2011 .

[43]  S. Siegesmund,et al.  The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview , 2011 .

[44]  S. Siegesmund,et al.  Post-Pampean cooling and the uplift of the Sierras Pampeanas in the west of Córdoba (Central Argentina) , 2010 .

[45]  U. Andersson,et al.  Hybridization of granitic magmas in the source: The origin of the Karakoram Batholith, Ladakh, NW India , 2010 .

[46]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[47]  R. Pankhurst,et al.  New SHRIMP U-Pb data from the Famatina Complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina , 2008 .

[48]  Geordie Mark,et al.  Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone, Ladakh, NW India , 2008 .

[49]  M. Pimentel,et al.  Neoproterozoic backarc basin: Sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina , 2007 .

[50]  J. Saavedra,et al.  Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids , 2007 .

[51]  L. Pinotti,et al.  Coalescence of lateral spreading magma ascending through dykes: a mechanism to form a granite canopy (El Hongo pluton, Sierras Pampeanas, Argentina) , 2006, Journal of the Geological Society.

[52]  R. Frei,et al.  The Mesoproterozoic Midsommersø dolerites and associated high-silica intrusions, North Greenland: crustal melting, contamination and hydrothermal alteration , 2006 .

[53]  L. Pinotti,et al.  Structural interplay between plutons during the construction of a batholith (Cerro Aspero batholith, Sierras de Córdoba, Argentina) , 2006 .

[54]  P. Černý,et al.  THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED , 2005 .

[55]  V. Troll,et al.  Sr and Nd isotope evidence for successive crustal contamination of Slieve Gullion ring-dyke magmas, Co. Armagh, Ireland , 2005, Geological Magazine.

[56]  P. Asimow,et al.  Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source , 2005 .

[57]  P. Asimow,et al.  Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California , 2005 .

[58]  J. Otamendi,et al.  Cambrian to Devonian Geologic Evolution of the Sierra de Comechingones, Eastern Sierras Pampeanas, Argentina: Evidence for the Development and Exhumation of Continental Crust on the Proto-Pacific Margin of Gondwana , 2004 .

[59]  W. Collins,et al.  A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example , 2004 .

[60]  R. Pankhurst,et al.  K-bentonites in the Argentine Precordillera contemporaneous with rhyolite volcanism in the Famatinian Arc , 2004, Journal of the Geological Society.

[61]  J. Schwartz,et al.  Provenance of a late Proterozoic–early Cambrian basin, Sierras de Córdoba, Argentina , 2004 .

[62]  R. Martino Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una reseña general , 2003 .

[63]  C. Simpson,et al.  High strain-rate deformation fabrics characterize a kilometers-thick Paleozoic fault zone in the Eastern Sierras Pampeanas, central Argentina , 2003 .

[64]  L. Pinotti,et al.  Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Aspero batholith, Sierras Pampeanas de Córdoba, Argentina , 2002 .

[65]  R. Larsen THE DISTRIBUTION OF RARE-EARTH ELEMENTS IN K-FELDSPAR AS AN INDICATOR OF PETROGENETIC PROCESSES IN GRANITIC PEGMATITES: EXAMPLES FROM TWO PEGMATITE FIELDS IN SOUTHERN NORWAY , 2002 .

[66]  J. Sigoyer,et al.  Sm Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks , 2001 .

[67]  A. Castro,et al.  Determination of the fluid–absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar , 2001 .

[68]  B. Chappell,et al.  Two contrasting granite types: 25 years later , 2001 .

[69]  R. Pankhurst,et al.  Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[70]  R. K. O’nions,et al.  Monazite chemical composition: some implications for monazite geochronology , 1999 .

[71]  Demichelis,et al.  Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Córdoba, Argentina , 1999 .

[72]  P. Möller,et al.  The Effect of Hydrothermal Alteration on the Sr and Nd Isotopic Signatures of the Barra do Itapirapuã Carbonatite, Southern Brazil , 1999, The Journal of Geology.

[73]  A. Camacho,et al.  Uranium-lead dating of felsic magmatic cycles in the southern Sierras Pampeanas, Argentina: Implications for the tectonic development of the proto-Andean Gondwana margin , 1999 .

[74]  R. Pankhurst The Proto-Andean Margin of Gondwana , 1998 .

[75]  J. Saavedra,et al.  Early evolution of the Proto-Andean margin of South America , 1998 .

[76]  I. Pascua Las rocas igneas y metamorficas de la sierra de los llanos, la rioja, argentina. Evolucion famatiniana de un sector del basamento pre-mesozoico andino , 1998 .

[77]  A. Camacho,et al.  U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin , 1998, Geological Society, London, Special Publications.

[78]  R. Pankhurst,et al.  The proto-Andean margin of Gondwana: an introduction , 1998, Geological Society, London, Special Publications.

[79]  A. Sato,et al.  The granitoids of the Sierra de San Luis , 1998, Geological Society, London, Special Publications.

[80]  J. Saavedra,et al.  The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin , 1998, Geological Society, London, Special Publications.

[81]  A. Whittington,et al.  Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: a field example from Nanga Parbat, Pakistan Himalayas , 1997, Mineralogical Magazine.

[82]  B. Barbarin Genesis of the two main types of peraluminous granitoids , 1996 .

[83]  K. Winther An experimentally based model for the origin of tonalitic and trondhjemitic melts , 1996 .

[84]  W. Collins Lachlan Fold Belt granitoids: products of three-component mixing , 1996, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[85]  B. Coira,et al.  Generation of a crust-mantle magma mixture: magma sources and contamination at Cerro Panizos, central Andes , 1996 .

[86]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[87]  T. Dunn,et al.  Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites , 1994 .

[88]  P. Wyllie,et al.  Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time , 1994 .

[89]  J. Tepper,et al.  Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity , 1993 .

[90]  J. Davidson,et al.  Volcanic rocks from the Bolivian Altiplano: Insights into crustal structure, contamination, and magma genesis in the central Andes , 1992 .

[91]  B. Chappell,et al.  I- and S-type granites in the Lachlan Fold Belt , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[92]  P. Wyllie,et al.  Dehydration-melting of solid amphibolite at 10 kbar: Textural development, liquid interconnectivity and applications to the segregation of magmas , 1991 .

[93]  E. Watson,et al.  Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites , 1991 .

[94]  G. Lofgren,et al.  Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb , 1991 .

[95]  T. Rushmer Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions , 1991 .

[96]  W. Hildreth,et al.  Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field , 1991 .

[97]  F. Cesbron Mineralogy of the Rare-Earth Elements , 1989 .

[98]  T. Druitt,et al.  Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon , 1988 .

[99]  R. Allmendinger,et al.  The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation , 1986 .

[100]  W. Boynton Cosmochemistry of the rare earth elements: meteorite studies. , 1984 .

[101]  M. McCulloch,et al.  Nd isotopic characteristics of S- and I-type granites , 1982 .

[102]  B. Doe,et al.  Plumbotectonics-the model , 1981 .

[103]  D. DePaolo Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization , 1981 .

[104]  P. Hamilton,et al.  Neodymium and Strontium Isotope Evidence for Crustal Contamination of Continental Volcanics , 1978, Science.

[105]  B. Chappell,et al.  Two contrasting granite types , 1974 .

[106]  J. A. Philpotts,et al.  Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis , 1970 .

[107]  J. A. Philpotts,et al.  Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II , 1970 .