Embeddings of k-complexes in 2k-manifolds and minimum rank of partial symmetric matrices

Let K be a k-dimensional simplicial complex having n faces of dimension k and M a closed (k − 1)-connected PL 2k-dimensional manifold. We prove that for k ≥ 3 odd K embeds into M if and only if there are • a skew-symmetric n × n-matrix A with Z-entries whose rank over Q does not exceed rkHk(M ;Z), • a general position PL map f : K → R2k, and • a collection of orientations on k-faces of K such that for any nonadjacent k-faces σ, τ of K the element Aσ,τ equals to the algebraic intersection of fσ and fτ . We prove some analogues of this result including those for Z2and Z-embeddability. Our results generalize the Bikeev-Fulek-Kynčl-Schaefer-Stefankovič criteria for the Z2and Z-embeddability of graphs to surfaces, and are related to the Harris-KrushkalJohnson-Paták-Tancer criteria for the embeddability of k-complexes into 2k-manifolds.

[1]  Vyacheslav S. Krushkal,et al.  Embedding obstructions and 4-dimensional thickenings of 2-complexes , 2000, math/0004058.

[2]  Martin Tancer,et al.  Embeddings of k-complexes into 2k-manifolds , 2019, Discret. Comput. Geom..

[3]  J. Macwilliams,et al.  Orthogonal Matrices Over Finite Fields , 1969 .

[4]  Byonghyo Shim,et al.  Low-Rank Matrix Completion: A Contemporary Survey , 2019, IEEE Access.

[5]  E. R. Kampen Komplexe in euklidischen Räumen , 1933 .

[6]  Arkadiy Skopenkov,et al.  Invariants of Graph Drawings in the Plane , 2018, ArXiv.

[7]  Jirí Matousek,et al.  Hardness of embedding simplicial complexes in Rd , 2009, SODA.

[8]  K. S. Sarkaria A one-dimensional Whitney trick and Kuratowski’s graph planarity criterion , 1991 .

[9]  M. Farber,et al.  Topology of Configuration Space of Two Particles on a Graph, I , 2009, 0903.2180.

[10]  C. Wall Classi?cation of (n ? 1)-connected 2n-manifolds , 1962 .

[11]  Michael H. Freedman,et al.  Van Kampen’s embedding Obstruction is incomplete for $2$-Complexes in $\rz^{4}$ , 1994 .

[12]  L. Harris Intersections and embeddings of polyhedra , 1969 .

[13]  Jan Kyncl,et al.  Z_2-genus of graphs and minimum rank of partial symmetric matrices , 2019, SoCG.

[14]  A. Skopenkov,et al.  A short exposition of the Patak-Tancer theorem on non-embeddability of k-complexes in 2k-manifolds , 2021, ArXiv.

[15]  Marcus Schaefer,et al.  Block Additivity of Z2-Embeddings , 2013 .

[16]  A. Skopenkov Surveys in Contemporary Mathematics: Embedding and knotting of manifolds in Euclidean spaces , 2006, math/0604045.

[17]  N. Bourbaki Elements of mathematics : algebra , 2003 .

[18]  Marcus Schaefer,et al.  Hanani-Tutte and Related Results , 2013 .

[19]  M. Farber,et al.  Topology of configuration space of two particles on a graph, II , 2009 .

[20]  Arthur Bikeev Criteria for integer and modulo 2 embeddability of graphs to surfaces , 2020, 2012.12070.

[21]  T. Macika.zek,et al.  Homology groups for particles on one-connected graphs , 2016, 1606.03414.

[22]  Arnold Shapiro,et al.  Obstructions to the Imbedding of a Complex in a Euclidean Space.: I. The First Obstruction , 1957 .

[23]  S. Melikhov,et al.  The van Kampen obstruction and its relatives , 2006, math/0612082.

[24]  Uli Wagner,et al.  Eliminating higher-multiplicity intersections. III. Codimension 2 , 2021, Israel Journal of Mathematics.

[25]  A. Albert Symmetric and alternate matrices in an arbitrary field. I , 1938 .

[26]  C. M. Johnson An obstruction to embedding a simplicial n-complex into a 2n-manifold , 2002 .

[27]  M. Irwin Embeddings of Polyhedral Manifolds , 1965 .