The Variable Detection of Atmospheric Escape around the Young, Hot Neptune AU Mic b

Photoevaporation is a potential explanation for several features within exoplanet demographics. Atmospheric escape observed in young Neptune-sized exoplanets can provide insight into and characterize which mechanisms drive this evolution and at what times they dominate. AU Mic b is one such exoplanet, slightly larger than Neptune (4.19 R ⊕). It closely orbits a 23 Myr pre-main-sequence M dwarf with an orbital period of 8.46 days. We obtained two visits of AU Mic b at Lyα with Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph. One flare within the first HST visit is characterized and removed from our search for a planetary transit. We present a nondetection in our first visit, followed by the detection of escaping neutral hydrogen ahead of the planet in our second visit. The outflow absorbed ∼30% of the star’s Lyα blue wing 2.5 hr before the planet’s white-light transit. We estimate that the highest-velocity escaping material has a column density of 1013.96 cm−2 and is moving 61.26 km s−1 away from the host star. AU Mic b’s large high-energy irradiation could photoionize its escaping neutral hydrogen in 44 minutes, rendering it temporarily unobservable. Our time-variable Lyα transit ahead of AU Mic b could also be explained by an intermediate stellar wind strength from AU Mic that shapes the escaping material into a leading tail. Future Lyα observations of this system will confirm and characterize the unique variable nature of its Lyα transit, which, combined with modeling, will tune the importance of stellar wind and photoionization.

[1]  J. Laskar,et al.  The magnetic field and multiple planets of the young dwarf AU Mic , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  J. Pineda,et al.  FUMES. III. Ultraviolet and Optical Variability of M-dwarf Chromospheres , 2022, The Astronomical Journal.

[3]  G. Herczeg,et al.  The Mysterious Affair of the H2 in AU Mic , 2022, The Astrophysical Journal.

[4]  A. D. Feinstein,et al.  AU Microscopii in the Far-UV: Observations in Quiescence, during Flares, and Implications for AU Mic b and c , 2022, The Astronomical Journal.

[5]  J. Drake,et al.  Space-weather-driven Variations in Lyα Absorption Signatures of Exoplanet Atmospheric Escape: MHD Simulations and the Case of AU Mic b , 2022, The Astrophysical Journal.

[6]  S. Aigrain,et al.  One year of AU Mic with HARPS: II -- stellar activity and star-planet interaction , 2022, 2203.08190.

[7]  A. Lagrange,et al.  One year of AU Mic with HARPS: I -- measuring the masses of the two transiting planets , 2022, 2203.01750.

[8]  M. Osorio,et al.  The polar orbit of the warm Neptune GJ 436b seen with VLT/ESPRESSO , 2022, Astronomy & Astrophysics.

[9]  L. Buchhave,et al.  Signatures of strong magnetization and a metal-poor atmosphere for a Neptune-sized exoplanet , 2021, Nature Astronomy.

[10]  R. Murray-Clay,et al.  The fundamentals of Lyman-alpha exoplanet transits , 2021, 2111.06094.

[11]  Jason T. Wright,et al.  The Warm Neptune GJ 3470b Has a Polar Orbit , 2021, The Astrophysical Journal Letters.

[12]  M. Osorio,et al.  Diving Beneath the Sea of Stellar Activity: Chromatic Radial Velocities of the Young AU Mic Planetary System , 2021, The Astronomical Journal.

[13]  D. Charbonneau,et al.  A Lyα Transit Left Undetected: the Environment and Atmospheric Behavior of K2-25b , 2021, The Astronomical Journal.

[14]  L. Walkowicz,et al.  Flares, Rotation, and Planets of the AU Mic System from TESS Observations , 2021, The Astronomical Journal.

[15]  K. Stassun,et al.  Transit Timing Variations for AU Microscopii b and c , 2021, Astronomy & Astrophysics.

[16]  A. Schwope,et al.  Exoplanet X-ray irradiation and evaporation rates with eROSITA , 2021, Astronomy & Astrophysics.

[17]  D. Ehrenreich,et al.  Detection of Ongoing Mass Loss from HD 63433c, a Young Mini-Neptune , 2021, The Astronomical Journal.

[18]  James G. Rogers,et al.  Photoevaporation versus core-powered mass-loss: model comparison with the 3D radius gap , 2021, Monthly Notices of the Royal Astronomical Society.

[19]  David J. Wilson,et al.  Reconstructing the Extreme Ultraviolet Emission of Cool Dwarfs Using Differential Emission Measure Polynomials , 2021, The Astrophysical Journal.

[20]  D. Gandolfi,et al.  A Heavy Molecular Weight Atmosphere for the Super-Earth π Men c , 2021, 2102.00203.

[21]  J. Laskar,et al.  New constraints on the planetary system around the young active star AU Mic , 2020, Astronomy & Astrophysics.

[22]  J. Drake,et al.  Stellar Winds Drive Strong Variations in Exoplanet Evaporative Outflow Patterns and Transit Absorption Signatures , 2020, 2012.05922.

[23]  G. del Zanna,et al.  CHIANTI—An Atomic Database for Emission Lines. XVI. Version 10, Further Extensions , 2020, The Astrophysical Journal.

[24]  C. Moutou,et al.  Investigating the young AU Mic system with SPIRou: large-scale stellar magnetic field and close-in planet mass , 2020, Monthly Notices of the Royal Astronomical Society.

[25]  Eve J. Lee,et al.  Primordial Radius Gap and Potentially Broad Core Mass Distributions of Super-Earths and Sub-Neptunes , 2020, 2008.01105.

[26]  James G. Rogers,et al.  Unveiling the planet population at birth , 2020, Monthly Notices of the Royal Astronomical Society.

[27]  P. Plavchan,et al.  The dichotomy of atmospheric escape in AU Mic b , 2020, 2006.13606.

[28]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[29]  Jason J. Wang,et al.  A planet within the debris disk around the pre-main sequence star AU Mic , 2020, Nature.

[30]  M. Damasso,et al.  Rotation-activity relations and flares of M dwarfs with K2 long- and short-cadence data , 2020, Astronomy & Astrophysics.

[31]  M. Wyatt,et al.  Susceptibility of planetary atmospheres to mass loss and growth by planetesimal impacts: the impact shoreline , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  T. Barman,et al.  Lyα Observations of High Radial Velocity Low-mass Stars Ross 1044 and Ross 825 , 2019, The Astrophysical Journal.

[33]  Nikole K. Lewis,et al.  The Hubble Space Telescope PanCET Program: Exospheric Mg ii and Fe ii in the Near-ultraviolet Transmission Spectrum of WASP-121b Using Jitter Decorrelation , 2019, The Astronomical Journal.

[34]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[35]  P. Lavvas,et al.  The Hubble PanCET program: an extensive search for metallic ions in the exosphere of GJ 436 b , 2019, Astronomy & Astrophysics.

[36]  L.A.Buchhave,et al.  Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b , 2018, 1812.05119.

[37]  Jessie L. Dotson,et al.  Lightkurve: Kepler and TESS time series analysis in Python , 2018 .

[38]  S. Messina,et al.  First long-term activity study of AU Microscopii: a possible chromospheric cycle , 2018, Monthly Notices of the Royal Astronomical Society.

[39]  R. Murray-Clay,et al.  Morphology of Hydrodynamic Winds: A Study of Planetary Winds in Stellar Environments , 2018, The Astrophysical Journal.

[40]  Akash Gupta,et al.  Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. , 2018, Monthly notices of the Royal Astronomical Society.

[41]  T. Monroe,et al.  Impacts of focus on aspects of STIS UV Spectroscopy , 2018 .

[42]  Isabella Pagano,et al.  HAZMAT. IV. Flares and Superflares on Young M Stars in the Far Ultraviolet , 2018, The Astrophysical Journal.

[43]  Kevin France,et al.  The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs , 2018, The Astrophysical Journal.

[44]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[45]  D. Lai,et al.  Photoevaporation and high-eccentricity migration created the sub-Jovian desert , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  Erik A. Petigura,et al.  The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap , 2018, The Astronomical Journal.

[47]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[48]  D. Ehrenreich,et al.  The long egress of GJ~436b's giant exosphere , 2017, 1709.04686.

[49]  S. Ginzburg,et al.  Core-powered mass-loss and the radius distribution of small exoplanets , 2017, 1708.01621.

[50]  J. Linsky,et al.  Intrinsic Lyα Profiles of High-velocity G, K, and M Dwarfs , 2017, The Astrophysical Journal.

[51]  R. Wittenmyer,et al.  H2 Fluorescence in M Dwarf Systems: A Stellar Origin , 2017, 1707.01101.

[52]  James E. Owen,et al.  The Evaporation Valley in the Kepler Planets , 2017, 1705.10810.

[53]  G. Chauvin,et al.  Combining direct imaging and radial velocity data towards a full exploration of the giant planet population , 2017, 1704.07432.

[54]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[55]  R. Rebolo,et al.  Magnetic cycles and rotation periods of late-type stars from photometric time series , 2016, 1607.03049.

[56]  Alain Lecavelier des Etangs,et al.  An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b , 2016, 1605.07973.

[57]  R. Gilliland,et al.  Hot super-Earths stripped by their host stars , 2016, Nature Communications.

[58]  Tsevi Mazeh,et al.  Dearth of short-period Neptunian exoplanets - a desert in period-mass and period-radius planes , 2016, 1602.07843.

[59]  Alain Lecavelier des Etangs,et al.  Radiative braking in the extended exosphere of GJ436b , 2015, 1508.06634.

[60]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[61]  Xavier Bonfils,et al.  A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b , 2015, Nature.

[62]  J. Sanz-Forcada,et al.  XUV-driven mass loss from extrasolar giant planets orbiting active stars , 2014, 1412.3380.

[63]  E. Mamajek,et al.  On the age of the β Pictoris moving group , 2014, 1409.2737.

[64]  Kevin France,et al.  FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS , 2014, 1402.0073.

[65]  Alain Lecavelier des Etangs,et al.  3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions , 2013, 1308.0561.

[66]  P. J. Wheatley,et al.  Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b , 2012, 1206.6274.

[67]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[68]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[69]  P. Schneider,et al.  X-raying the AU Microscopii debris disk , 2010, 1003.5562.

[70]  P. Feldman,et al.  A Low-Mass H2 Component to the AU Microscopii Circumstellar Disk , 2007, 0707.1044.

[71]  F. Selsis,et al.  Roche lobe effects on the atmospheric loss from "Hot Jupiters" , 2006, astro-ph/0612729.

[72]  A. D. Etangs,et al.  A diagram to determine the evaporation status of extrasolar planets , 2006, astro-ph/0609744.

[73]  G. Williger,et al.  What Is the Total Deuterium Abundance in the Local Galactic Disk? , 2006, astro-ph/0608308.

[74]  Ben Zuckerman,et al.  Young Stars Near the Sun , 2004 .

[75]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[76]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[77]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[78]  J. Linsky,et al.  HST/STIS Echelle Spectra of the dM1e Star AU Microscopii Outside of Flares , 2000 .

[79]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[80]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[81]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .