Novel acceleration methods for electromagnetic modeling of high-speed interconnects in distribution grids ASIC

Application Specific Integrated Circuits (ASICs) serving as the hardware foundation of smart equipment, play an important role in operation, control, protection and communication of future distribution grids. Recently, the design and electromagnetic (EM) analysis of high-speed interconnects is the key part for Integrated Circuit (IC) technology, especially for ASICs. The full wave spectral domain approach (SDA) in conjunction with Method of Moment (MoM) is the most accurate and comprehensive approach among all EM modeling approach of high-speed interconnects. However, acceleration methods are needed to decrease its complexity and increase its efficiency. Novel acceleration methods in SDA are present to solve a typical high-speed interconnect structure. Numerical results show that the novel methods can achieve higher accuracy and efficiency than conventional acceleration methods.

[1]  Jiming Song,et al.  Efficient and Accurate Approximation of Infinite Series Summation Using Asymptotic Approximation and Super Convergent Series , 2013, IEEE Transactions on Magnetics.

[2]  K. G. Verma,et al.  Effect of Line Parasitic Variations on Propagation Delay in Global VLSI Interconnects , 2011 .

[4]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .

[5]  Avram Sidi,et al.  The numerical evaluation of very oscillatory infinite integrals by extrapolation , 1982 .

[6]  R. Mittra,et al.  Spectral-Domain Approach for Calculating the Dispersion Characteristics of Microstrip Lines (Short Papers) , 1973 .

[7]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[8]  P. Wynn,et al.  On a device for computing the _{}(_{}) tranformation , 1956 .

[9]  Sidharath Jain,et al.  Accurate and Efficient Modeling of Interconnects in Lossy Layered Media , 2011 .

[10]  Accelerated spectral domain approach for shielded microstrip lines by approximating summation with super convergent series , 2010, Digests of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation.

[11]  B. Hatton,et al.  Materials chemistry for low-k materials , 2006 .

[12]  Krzysztof A. Michalski,et al.  Extrapolation methods for Sommerfeld integral tails , 1998 .

[13]  Ramachandra Achar,et al.  Simulation of high-speed interconnects , 2001, Proc. IEEE.

[14]  Jiming Song,et al.  A novel approach to accelerate spectral domain approach for shielded microstrip lines using the Levin transformations and summation‐by‐parts , 2014 .

[15]  G. Fikioris,et al.  Rapidly converging spectral-domain analysis of rectangularly shielded layered microstrip lines , 2003 .

[16]  A. Sidi Extrapolation methods for divergent oscillatory infinite integrals that are defined in the sense of summability , 1987 .