Detection of Intrusions and Malware, and Vulnerability Assessment

[1]  Seetha Hari,et al.  Learning From Imbalanced Data , 2019, Advances in Computer and Electrical Engineering.

[2]  Diego F. Aranha,et al.  Platform-agnostic Low-intrusion Optical Data Exfiltration , 2017, ICISSP.

[3]  Andrei Costin,et al.  Security of CCTV and Video Surveillance Systems: Threats, Vulnerabilities, Attacks, and Mitigations , 2016, TrustED@CCS.

[4]  Mordechai Guri,et al.  USBee: Air-gap covert-channel via electromagnetic emission from USB , 2016, 2016 14th Annual Conference on Privacy, Security and Trust (PST).

[5]  Mordechai Guri,et al.  DiskFiltration: Data Exfiltration from Speakerless Air-Gapped Computers via Covert Hard Drive Noise , 2016, ArXiv.

[6]  Mordechai Guri,et al.  VisiSploit: An Optical Covert-Channel to Leak Data through an Air-Gap , 2016, ArXiv.

[7]  Mordechai Guri,et al.  Fansmitter: Acoustic Data Exfiltration from (Speakerless) Air-Gapped Computers , 2016, ArXiv.

[8]  Stefan Katzenbeisser,et al.  Covert channels using mobile device's magnetic field sensors , 2016, 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC).

[9]  Chaouki Kasmi,et al.  Air-gap Limitations and Bypass Techniques: “Command and Control” using Smart Electromagnetic Interferences , 2016 .

[10]  Ji Won Yoon,et al.  Various Threat Models to Circumvent Air-Gapped Systems for Preventing Network Attack , 2015, WISA.

[11]  Mordechai Guri,et al.  GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies , 2015, USENIX Security Symposium.

[12]  Mordechai Guri,et al.  BitWhisper: Covert Signaling Channel between Air-Gapped Computers Using Thermal Manipulations , 2015, 2015 IEEE 28th Computer Security Foundations Symposium.

[13]  Mordechai Guri,et al.  AirHopper: Bridging the air-gap between isolated networks and mobile phones using radio frequencies , 2014, 2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE).

[14]  Mordechai Guri,et al.  Exfiltration of information from air-gapped machines using monitor's LED indicator , 2014, 2014 IEEE Joint Intelligence and Security Informatics Conference.

[15]  Luke Deshotels,et al.  Inaudible Sound as a Covert Channel in Mobile Devices , 2014, WOOT.

[16]  Kim-Kwang Raymond Choo,et al.  Bridging the Air Gap: Inaudible Data Exfiltration by Insiders , 2014, AMCIS.

[17]  Michael Hanspach,et al.  On Covert Acoustical Mesh Networks in Air , 2014, J. Commun..

[18]  Chao Yang,et al.  Empirical Evaluation and New Design for Fighting Evolving Twitter Spammers , 2011, IEEE Transactions on Information Forensics and Security.

[19]  Stefan Schmid,et al.  An LED-to-LED Visible Light Communication system with software-based synchronization , 2012, 2012 IEEE Globecom Workshops.

[20]  Nils Ole Tippenhauer,et al.  Low-complexity Visible Light Networking with LED-to-LED communication , 2012, 2012 IFIP Wireless Days.

[21]  Christopher Krügel,et al.  A quantitative study of accuracy in system call-based malware detection , 2012, ISSTA 2012.

[22]  Chris H. Q. Ding,et al.  Multi-label ReliefF and F-statistic feature selections for image annotation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Wouter Joosen,et al.  Runtime countermeasures for code injection attacks against C and C++ programs , 2012, CSUR.

[24]  Herbert Bos,et al.  Prudent Practices for Designing Malware Experiments: Status Quo and Outlook , 2012, 2012 IEEE Symposium on Security and Privacy.

[25]  Nitesh Saxena,et al.  A closer look at keyboard acoustic emanations: random passwords, typing styles and decoding techniques , 2012, ASIACCS '12.

[26]  Karthik Raman,et al.  Selecting Features to Classify Malware , 2012 .

[27]  Stefano Zanero,et al.  Finding Non-trivial Malware Naming Inconsistencies , 2011, ICISS.

[28]  Carsten Willems,et al.  Automatic analysis of malware behavior using machine learning , 2011, J. Comput. Secur..

[29]  Stamatis Karnouskos,et al.  Stuxnet worm impact on industrial cyber-physical system security , 2011, IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society.

[30]  Curtis B. Storlie,et al.  Graph-based malware detection using dynamic analysis , 2011, Journal in Computer Virology.

[31]  Vinod Yegneswaran,et al.  A comparative assessment of malware classification using binary texture analysis and dynamic analysis , 2011, AISec '11.

[32]  David Brumley,et al.  BitShred: feature hashing malware for scalable triage and semantic analysis , 2011, CCS '11.

[33]  Andreas Dewald,et al.  Forschungsberichte der Fakultät IV – Elektrotechnik und Informatik C UJO : Efficient Detection and Prevention of Drive-by-Download Attacks , 2010 .

[34]  Yan Li,et al.  Building a decision cluster classification model by a clustering algorithm to classify large high dimensional data with multiple classes , 2010 .

[35]  Kang G. Shin,et al.  Large-scale malware indexing using function-call graphs , 2009, CCS.

[36]  Muhammad Zubair Shafiq,et al.  PE-Miner: Mining Structural Information to Detect Malicious Executables in Realtime , 2009, RAID.

[37]  Martin Vuagnoux,et al.  Compromising Electromagnetic Emanations of Wired and Wireless Keyboards , 2009, USENIX Security Symposium.

[38]  Christopher Krügel,et al.  Effective and Efficient Malware Detection at the End Host , 2009, USENIX Security Symposium.

[39]  Christopher Krügel,et al.  Scalable, Behavior-Based Malware Clustering , 2009, NDSS.

[40]  Wenke Lee,et al.  McBoost: Boosting Scalability in Malware Collection and Analysis Using Statistical Classification of Executables , 2008, 2008 Annual Computer Security Applications Conference (ACSAC).

[41]  Tao Li,et al.  An intelligent PE-malware detection system based on association mining , 2008, Journal in Computer Virology.

[42]  Zhuoqing Morley Mao,et al.  Automated Classification and Analysis of Internet Malware , 2007, RAID.

[43]  Marcus A. Maloof,et al.  Learning to Detect and Classify Malicious Executables in the Wild , 2006, J. Mach. Learn. Res..

[44]  Christopher Krügel,et al.  Polymorphic Worm Detection Using Structural Information of Executables , 2005, RAID.

[45]  Volker Roth,et al.  Feature Selection in Clustering Problems , 2003, NIPS.

[46]  Markus G. Kuhn,et al.  Compromising Emanations , 2002, Encyclopedia of Cryptography and Security.

[47]  David A. Umphress,et al.  Information leakage from optical emanations , 2002, TSEC.

[48]  Huiqing Liu,et al.  A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. , 2002, Genome informatics. International Conference on Genome Informatics.

[49]  Salvatore J. Stolfo,et al.  Data mining methods for detection of new malicious executables , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[50]  Markus G. Kuhn,et al.  Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations , 1998, Information Hiding.

[51]  Jee Fung Pang,et al.  Understanding the Windows NT I/O Subsystem , 1998, Int. CMG Conference.

[52]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.