Undecidability and Definability for Parametrized Polynomial Time m-Reducibilities

In the setting of the parametrized reducibilities introduced by the second author and Mike Fellows, we prove a number of decidability and definability results. In particular the undecidability of the relevant m-degree structures is proven. The relationship with classical notions is analyzed, and this leads to a number of observations about classical constructions in the PTIME degrees. Methods include 0″, 0″′ and 0 (4) priority arguments combined with speedup type arguments.

[1]  Kurt Mehlhorn,et al.  Polynomial and abstract subrecursive classes , 1974, STOC '74.

[2]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[3]  A. Nerode,et al.  Recursion Theory on Matroids II , 1983 .

[4]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[5]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[6]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[7]  Michael R. Fellows,et al.  Fixed-parameter intractability , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[8]  A. Nerode,et al.  Recursively enumerable vector spaces , 1977 .

[9]  Klaus Ambos-Spies,et al.  The Theory of the Polynomial Many-One Degrees of Recursive Sets is Undecidable , 1992, STACS.

[10]  Juichi Shinoda,et al.  On Pi_2 Theories of hp-T Degrees of Low Sets , 1994, Theor. Comput. Sci..

[11]  Anil Nerode,et al.  Complexity Theoretic Algebra I Vector Spaces over Finite Fields , 2008 .

[12]  Michael R. Fellows,et al.  Fixed-Parameter Intractability II (Extended Abstract) , 1993, STACS.

[13]  Robert I. Soare,et al.  Minimal Pairs and Complete Problems , 1990, STACS.

[14]  Kurt Mehlhorn Polynomial and Abstract Subrecursive Classes , 1976, J. Comput. Syst. Sci..

[15]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[16]  Rodney G. Downey Nondiamond Theorems for Polynomial Time Reducibility , 1992, J. Comput. Syst. Sci..

[17]  Theodore A. Slaman,et al.  On the Theory of the PTIME Degrees of the Recursive Sets , 1990, J. Comput. Syst. Sci..

[18]  Klaus Ambos-Spies Minimal Pairs for Polynomial Time Reducibilities , 1987, Computation Theory and Logic.

[19]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[20]  Anil Nerode,et al.  Reducibility orderings: Theories, definability and automorphisms☆ , 1980 .

[21]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[22]  Anil Nerode,et al.  Polynomially graded logic I. A graded version of system T , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[23]  Anil Nerode,et al.  A Universal Embedding Property of the RETs , 1970, J. Symb. Log..

[24]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[25]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[26]  André Nies,et al.  The Theory of the Recursively Enumerable Weak Truth-Table Degrees Is Undecidability , 1992, J. Symb. Log..

[27]  Michael R. Fellows,et al.  An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations , 1989, 30th Annual Symposium on Foundations of Computer Science.

[28]  Klaus Ambos-Spies On the structure of the polynomial time degrees of recursive sets , 1985, Forschungsberichte.

[29]  Klaus Ambos-Spies On the Structure of Polynomial Time Degrees , 1984, STACS.

[30]  Larry Stockmeyer,et al.  Planar 3-colorability is polynomial complete , 1973, SIGA.

[31]  Michael R. Fellows,et al.  On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.

[32]  Richard A. Shore,et al.  The p-T Degrees of the Recursive Sets: Lattice Embeddings, Extensions of Embeddings and the Two-Quantifier Theory , 1992, Theor. Comput. Sci..

[33]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .