Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation

The cerebellum refines the accuracy and timing of motor performance. How it encodes information to perform these functions is a major topic of interest. We performed whole cell and extracellular recordings of Purkinje cells (PCs) and cerebellar nuclei neurons (CNs) in vivo, while activating PCs with light in transgenic mice. We show for the first time that graded activation of PCs translates into proportional CN inhibition and induces rebound activity in CNs, which is followed by graded motor contractions timed to the cessation of the stimulus. Moreover, activation of PC ensembles led to disinhibition of climbing fiber activity, which coincided with rebound activity in CNs. Our data indicate that cessation of concerted activity in ensembles of PCs can regulate both timing and strength of movements via control of rebound activity in CNs.

[1]  J. Voogd,et al.  Organization of projections from the inferior olive to the cerebellar nuclei in the rat , 2000, The Journal of comparative neurology.

[2]  R. Llinás,et al.  The olivo-cerebellar system: Functional properties as revealed by harmaline-induced tremor , 1973, Experimental Brain Research.

[3]  T. Otis,et al.  Effects of Climbing Fiber Driven Inhibition on Purkinje Neuron Spiking , 2012, The Journal of Neuroscience.

[4]  Cornelius Schwarz,et al.  Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. , 2003, Journal of neurophysiology.

[5]  D. Linden,et al.  Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. , 1999, Journal of neurophysiology.

[6]  Chris I De Zeeuw,et al.  Encoding of whisker input by cerebellar Purkinje cells , 2010, The Journal of physiology.

[7]  Germund Hesslow,et al.  Simple and Complex Spike Firing Patterns in Purkinje Cells During Classical Conditioning , 2008, The Cerebellum.

[8]  Ray W. Turner,et al.  Rebound Discharge in Deep Cerebellar Nuclear Neurons In Vitro , 2010, The Cerebellum.

[9]  S. I. Levin,et al.  Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells. , 2006, Journal of neurophysiology.

[10]  Erik De Schutter,et al.  Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells , 2010, Journal of Computational Neuroscience.

[11]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[12]  Chris I. De Zeeuw,et al.  Climbing Fiber Input Shapes Reciprocity of Purkinje Cell Firing , 2013, Neuron.

[13]  H. Kuypers,et al.  Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord , 1982, Experimental Brain Research.

[14]  M. Häusser,et al.  Spatial Pattern Coding of Sensory Information by Climbing Fiber-Evoked Calcium Signals in Networks of Neighboring Cerebellar Purkinje Cells , 2009, The Journal of Neuroscience.

[15]  J. Voogd,et al.  Topography of cerebellar nuclear projections to the brain stem in the rat. , 2000, Progress in brain research.

[16]  A. Bjo¨rklund,et al.  The indolaminergic innervation of the inferior olive. 2. Relation to harmaline induced tremor , 1977, Brain Research.

[17]  R. Llinás,et al.  GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. , 1996, Journal of neurophysiology.

[18]  C. Buisseret-Delmas,et al.  The cerebellar olivo-corticonuclear connections in the rat , 1993, Progress in Neurobiology.

[19]  S. Koekkoek,et al.  Spatiotemporal firing patterns in the cerebellum , 2011, Nature Reviews Neuroscience.

[20]  Alexander Borst,et al.  Spatial Distribution of Low- and High-Voltage-Activated Calcium Currents in Neurons of the Deep Cerebellar Nuclei , 2001, The Journal of Neuroscience.

[21]  J. Deuchars,et al.  Role of Olivary Electrical Coupling in Cerebellar Motor Learning , 2008, Neuron.

[22]  Reza Tadayonnejad,et al.  Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. , 2008, Journal of neurophysiology.

[23]  Kamran Khodakhah,et al.  Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia , 2006, Nature Neuroscience.

[24]  K. Deisseroth,et al.  High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels , 2011, Proceedings of the National Academy of Sciences.

[25]  Allan R. Jones,et al.  A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing , 2012, Nature Neuroscience.

[26]  Chris I De Zeeuw,et al.  Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei , 2010, Proceedings of the National Academy of Sciences.

[27]  J. Szentágothai,et al.  Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses , 1977, Experimental Brain Research.

[28]  S. Zackson,et al.  A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. , 1990, Science.

[29]  I. Raman,et al.  Resurgent Sodium Current and Action Potential Formation in Dissociated Cerebellar Purkinje Neurons , 1997, The Journal of Neuroscience.

[30]  H. Meeren,et al.  Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat. , 1998, Electroencephalography and clinical neurophysiology.

[31]  H. Jahnsen,et al.  Electrophysiological characteristics of neurones in the guinea‐pig deep cerebellar nuclei in vitro. , 1986, The Journal of physiology.

[32]  J. F. Lorden,et al.  Effect of harmaline on cells of the inferior olive in the absence of tremor: Differential response of genetically dystonic and harmaline-tolerant rats , 1991, Neuroscience.

[33]  J. Eccles,et al.  Excitation of Cerebellar Purkinje Cells by the Climbing Fibres , 1964, Nature.

[34]  C. Bell,et al.  Discharge properties of Purkinje cells recorded on single and double microelectrodes. , 1969, Journal of Neurophysiology.

[35]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[36]  C. Sotelo,et al.  Synaptology of the cerebello-olivary pathway. Double labelling with anterograde axonal tracing and GABA immunocytochemistry in the rat , 1989, Brain Research.

[37]  Nicolas Brunel,et al.  High-Frequency Organization and Synchrony of Activity in the Purkinje Cell Layer of the Cerebellum , 2008, Neuron.

[38]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[39]  Thomas Knöpfel,et al.  Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. , 2007, Journal of neurophysiology.

[40]  Abigail L. Person,et al.  Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei , 2011, Nature.

[41]  Dilwyn E Marple-Horvat,et al.  Mechanisms of synchronous activity in cerebellar Purkinje cells , 2010, The Journal of physiology.

[42]  D. Harriman CEREBELLAR CORTEX, CYTOLOGY AND ORGANIZATION , 1974 .

[43]  M. Garwicz,et al.  Micro-organisation of cerebellar modules controlling forelimb movements. , 2000, Progress in brain research.

[44]  I. Raman,et al.  Subunit dependence of Na channel slow inactivation and open channel block in cerebellar neurons. , 2007, Biophysical journal.

[45]  Alain Marty,et al.  Interneurons of the cerebellar cortex toggle Purkinje cells between up and down states , 2010, Proceedings of the National Academy of Sciences.

[46]  E. Mugnaini,et al.  Fine structure of the dorsal cap of the inferior olive and its GAB aergic and non‐Gabaergic input from the nucleus prepositus hypoglossi in rat and rabbit , 1993, The Journal of comparative neurology.

[47]  R. Llinás,et al.  The Functional Organization of the Olivo‐Cerebellar System as Examined by Multiple Purkinje Cell Recordings , 1989, The European journal of neuroscience.

[48]  C I De Zeeuw,et al.  Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. , 1997, Journal of neurophysiology.

[49]  Adam Kohn,et al.  Questioning the role of rebound firing in the cerebellum , 2008, Nature Neuroscience.

[50]  D. H. Paul,et al.  Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres , 1971, The Journal of physiology.

[51]  C I De Zeeuw,et al.  Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. , 1997, Neuroscience.

[52]  L. T. Robertson Topographic features of climbing fiber input in the rostral vermal cortex of the cat cerebellum , 2004, Experimental Brain Research.

[53]  R. Llinás,et al.  Patterns of Spontaneous Purkinje Cell Complex Spike Activity in the Awake Rat , 1999, The Journal of Neuroscience.

[54]  Eran Stark,et al.  Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. , 2012, Journal of neurophysiology.

[55]  C. Sekirnjak,et al.  Long-Lasting Increases in Intrinsic Excitability Triggered by Inhibition , 2003, Neuron.

[56]  J. Voogd,et al.  Transverse and longitudinal patterns in the mammalian cerebellum. , 1997, Progress in brain research.

[57]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[58]  J. Voogd,et al.  Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leucoagglutinin (PHA‐L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei , 1989, The Journal of comparative neurology.

[59]  Abigail L. Person,et al.  Synchrony and neural coding in cerebellar circuits , 2012, Front. Neural Circuits.

[60]  G. Hesslow,et al.  Feedback control of Purkinje cell activity by the cerebello‐olivary pathway , 2004, The European journal of neuroscience.

[61]  J. Voogd,et al.  Cerebellar nucleo‐olivary projections in the rat: An anterograde tracing study with Phaseolus vulgaris‐leucoagglutinin (PHA‐L) , 1990, The Journal of comparative neurology.

[62]  Henrik Jörntell,et al.  Receptive Field Plasticity Profoundly Alters the Cutaneous Parallel Fiber Synaptic Input to Cerebellar Interneurons In Vivo , 2003, The Journal of Neuroscience.

[63]  H. Jörntell,et al.  Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre‐specific , 2001, The European journal of neuroscience.

[64]  N. Slater,et al.  Resurgent Na currents in four classes of neurons of the cerebellum. , 2004, Journal of neurophysiology.

[65]  S. Wang,et al.  Reliable Coding Emerges from Coactivation of Climbing Fibers in Microbands of Cerebellar Purkinje Neurons , 2009, The Journal of Neuroscience.

[66]  I. Raman,et al.  Depression of Inhibitory Synaptic Transmission between Purkinje Cells and Neurons of the Cerebellar Nuclei , 2002, The Journal of Neuroscience.

[67]  H. Jörntell,et al.  Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat , 2000, The Journal of physiology.

[68]  T Fujikado,et al.  Saccadic eye movements evoked by microstimulation of lobule VII of the cerebellar vermis of macaque monkeys. , 1987, The Journal of physiology.

[69]  Yosef Yarom,et al.  A model of the olivo-cerebellar system as a temporal pattern generator , 2008, Trends in Neurosciences.

[70]  J. Born,et al.  The contribution of sleep to hippocampus-dependent memory consolidation , 2007, Trends in Cognitive Sciences.

[71]  Henrik Jörntell,et al.  Reciprocal Bidirectional Plasticity of Parallel Fiber Receptive Fields in Cerebellar Purkinje Cells and Their Afferent Interneurons , 2002, Neuron.

[72]  Reza Tadayonnejad,et al.  Distinct roles for IT and IH in controlling the frequency and timing of rebound spike responses , 2011, The Journal of physiology.

[73]  C I De Zeeuw,et al.  Topography of saccadic eye movements evoked by microstimulation in rabbit cerebellar vermis. , 1994, The Journal of physiology.

[74]  H. Sompolinsky,et al.  Bistability of cerebellar Purkinje cells modulated by sensory stimulation , 2005, Nature Neuroscience.

[75]  P. Strata,et al.  Mossy and climbing fibre organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex , 2004, Experimental Brain Research.

[76]  Neil Davey,et al.  STD-Dependent and Independent Encoding of Input Irregularity as Spike Rate in a Computational Model of a Cerebellar Nucleus Neuron , 2011, The Cerebellum.

[77]  T. Ruigrok,et al.  The Cerebellar Nuclei Take Center Stage , 2011, Cerebellum.

[78]  R. Llinás,et al.  Electrophysiology of guinea‐pig cerebellar nuclear cells in the in vitro brain stem‐cerebellar preparation. , 1988, The Journal of physiology.

[79]  J. Bower,et al.  Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex , 1989, The European journal of neuroscience.

[80]  C. I. de Zeeuw,et al.  A new combination of WGA-HRP anterograde tracing and GABA immunocytochemistry applied to afferents of the cat inferior olive at the ultrastructural level , 1988, Brain Research.

[81]  伊藤 正男 The cerebellum and neural control , 1984 .

[82]  I. Raman,et al.  Potentiation of Mossy Fiber EPSCs in the Cerebellar Nuclei by NMDA Receptor Activation followed by Postinhibitory Rebound Current , 2006, Neuron.

[83]  H. Noda,et al.  Involvement of Purkinje cells in evoking saccadic eye movements by microstimulation of the posterior cerebellar vermis of monkeys. , 1987, Journal of neurophysiology.

[84]  Nan Zheng,et al.  Ca Currents Activated by Spontaneous Firing and Synaptic Disinhibition in Neurons of the Cerebellar Nuclei , 2009, The Journal of Neuroscience.

[85]  W T Thach,et al.  On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement , 2007, Proceedings of the National Academy of Sciences.

[86]  H. Jörntell,et al.  In Vivo Analysis of Inhibitory Synaptic Inputs and Rebounds in Deep Cerebellar Nuclear Neurons , 2011, PloS one.

[87]  Boris Barbour,et al.  Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover , 2007, Nature Neuroscience.

[88]  W Hamish Mehaffey,et al.  Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Peter Thier,et al.  Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response , 2008, Proceedings of the National Academy of Sciences.

[90]  R. Harvey,et al.  Quantitatives studies on the mammalian cerebellum , 1991, Progress in Neurobiology.

[91]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[92]  H. Sompolinsky,et al.  Purkinje cells in awake behaving animals operate at the upstate membrane potential , 2006, Nature Neuroscience.