Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode

S. Yuan, Dr. X.-L. Huang, D.-L. Ma, Dr. H.-G. Wang, Dr. F.-Z. Meng, Prof. X.-B. Zhang State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, 130022 , P. R. China E-mail: xbzhang@ciac.ac.cn S. Yuan, D.-L. Ma Key Laboratory of Automobile Materials Ministry of Education, and College of Materials Science and Engineering, Jilin University Changchun, 130012 , P. R. China

[1]  C. Serna,et al.  The relationship of particle morphology and structure of basic copper(II) compounds obtained by homogeneous precipitation , 1994 .

[2]  Yunhui Huang,et al.  Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. , 2012, Nanoscale.

[3]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[4]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[5]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[6]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[7]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[8]  J. Koberstein,et al.  Quantitative Analysis of Copper Oxide Nanoparticle Composition and Structure by X-ray Photoelectron Spectroscopy , 2006 .

[9]  Synthesis and Characterization of Nanostructured CuO Array Films , 2007 .

[10]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[11]  Xin-bo Zhang,et al.  Homogeneous CoO on Graphene for Binder‐Free and Ultralong‐Life Lithium Ion Batteries , 2013 .

[12]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[13]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[14]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[15]  H. Ahn,et al.  SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. , 2013, Chemical communications.

[16]  Xin-bo Zhang,et al.  Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. , 2013, ChemSusChem.

[17]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[18]  Yuanyuan Li,et al.  Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. , 2013, Nano letters.

[19]  Linda F. Nazar,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .

[20]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[21]  Jinping Liu,et al.  Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability , 2006 .

[22]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[23]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[24]  J. Goodenough,et al.  Exploration of NaVOPO4 as a cathode for a Na-ion battery. , 2013, Chemical communications.

[25]  Xiqian Yu,et al.  A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. , 2013, Nano letters.

[26]  Jiangfeng Qian,et al.  A Sn–SnS–C nanocomposite as anode host materials for Na-ion batteries , 2013 .

[27]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[28]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[29]  X. Lou,et al.  Controlled synthesis of hierarchical CoxMn3−xO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries , 2013 .

[30]  Pooi See Lee,et al.  V2O5 Loaded on SnO2 Nanowires for High‐Rate Li Ion Batteries , 2011, Advanced materials.

[31]  Xiaogang Han,et al.  Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. , 2012, Nano letters.

[32]  Guihua Yu,et al.  Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. , 2013, Nano letters.

[33]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[34]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[35]  M. Armand,et al.  Building better batteries , 2008, Nature.

[36]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[37]  Z.L. Wang,et al.  Single‐Crystalline Scroll‐Type Nanotube Arrays of Copper Hydroxide Synthesized at Room Temperature , 2003 .

[38]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[39]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[40]  Khalil Amine,et al.  A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. , 2012, Journal of the American Chemical Society.

[41]  Md. Mokhlesur Rahman,et al.  Nanocrystalline porous α-LiFeO2–C composite—an environmentally friendly cathode for the lithium-ion battery , 2011 .

[42]  Haoshen Zhou,et al.  Nanomaterials for lithium ion batteries , 2006 .

[43]  Yunhui Huang,et al.  Hollow 0.3Li2MnO3·0.7LiNi(0.5)Mn(0.5)O2 microspheres as a high-performance cathode material for lithium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[44]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[45]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[46]  Jun Liu,et al.  Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. , 2012, Nano letters.

[47]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[48]  Yu Zhou,et al.  Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries , 2010 .

[49]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[50]  Jaephil Cho,et al.  Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries , 2011 .

[51]  H. Kwon,et al.  Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials , 2009 .

[52]  Qiang Sun,et al.  Nanoengineered Polypyrrole‐Coated Fe2O3@C Multifunctional Composites with an Improved Cycle Stability as Lithium‐Ion Anodes , 2013 .

[53]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.