Eigenvalue Estimates via Pseudospectra
暂无分享,去创建一个
[1] C. Bekas,et al. Parallel computation of pseudospectra by fast descent , 2002, Parallel Comput..
[2] L. Trefethen. Approximation theory and numerical linear algebra , 1990 .
[3] Bounds for the Perron root of nonnegative matrices and spectral radius of iteration matrices , 2017 .
[4] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[5] Peter Lancaster,et al. On the Pseudospectra of Matrix Polynomials , 2005, SIAM J. Matrix Anal. Appl..
[6] Efstratios Gallopoulos,et al. Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization , 2004, Applied Numerical Mathematics.
[7] J. Varah. On the Separation of Two Matrices , 1979 .
[8] Linzhang Lu,et al. Perron complement and Perron root , 2002 .
[9] J. Demmel. A counterexample for two conjectures about stability , 1987 .
[10] Panayiotis Psarrakos,et al. An improved grid method for the computation of the pseudospectra of matrix polynomials , 2009, Math. Comput. Model..
[11] H. Landau,et al. On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .
[12] Bo Zhou,et al. Sharp bounds on the spectral radius of a nonnegative matrix , 2013 .
[13] Lloyd N. Trefethen,et al. Computation of pseudospectra , 1999, Acta Numerica.
[14] Nicholas J. Higham,et al. Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..
[15] Doulaye Demb'el'e. A method for computing the Perron root for primitive matrices , 2021, Numer. Linear Algebra Appl..
[16] L. Kolotilina. Lower bounds for the perron root of a nonnegative matrix , 1993 .
[17] Constantine Bekas,et al. Cobra: Parallel path following for computing the matrix pseudospectrum , 2001, Parallel Comput..
[18] John G. Lewis,et al. Sparse matrix test problems , 1982, SGNM.
[19] Barry Simon,et al. Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle , 2006, Journal of Approximation Theory.
[20] Shulin Liu. Bounds for the greatest characteristic root of a nonnegative matrix , 1996 .
[21] Lloyd N. Trefethen,et al. Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues , 1990 .
[22] Israel Koltracht,et al. On accurate computations of the Perron root , 1993 .
[23] J. L. V. Dorsselaer,et al. Pseudospectra for matrix pencils and stability of equilibria , 1997 .
[24] Bounds for the spectral radius of nonnegative matrices , 2013, 1309.5604.
[25] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[26] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[27] Ronald G Mosier. Root neighborhoods of a polynomial , 1986 .
[28] Martin Brühl. A curve tracing algorithm for computing the pseudospectrum , 1996 .