ON THE PROPAGATION OF BINARY SIGNALS IN A TWO-DIMENSIONAL NONLINEAR LATTICE WITH NEAREST-NEIGHBOR INTERACTIONS

In this work, we use a computational technique with multiple properties of consistency in order to approximate solutions of a bounded β-Fermi–Pasta–Ulam lattice in two space dimensions subject to harmonic driving in two adjacent boundaries. The processes of nonlinear supratransmission and infratransmission are employed in order to propagate binary signals in the medium by means of a suitable modulation of the driving amplitude.

[1]  S. Flach,et al.  Discrete breathers in Fermi-Pasta-Ulam lattices. , 2004, Chaos.

[2]  J. E. Mac'ias-D'iaz,et al.  On the transmission of binary bits in discrete Josephson-junction arrays , 2008 .

[3]  Stefano Lepri,et al.  Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Ramaz Khomeriki,et al.  Theory of a Josephson junction parallel array detector sensitive to very weak signals , 2006 .

[5]  Frederic Geniet,et al.  Nonlinear Supratransmission , 2003 .

[6]  J. Leon,et al.  Nonlinear energy transmission in the gap , 2001 .

[7]  D. Bambusi,et al.  Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. , 2005, Chaos.

[8]  Bob Rink Direction-Reversing Traveling Waves in the Even Fermi-Pasta-Ulam Lattice , 2002, J. Nonlinear Sci..

[9]  Jérôme Leon,et al.  Gap soliton formation by nonlinear supratransmission in Bragg media [rapid communication] , 2004 .

[10]  J. Wattis,et al.  Discrete breathers in a two-dimensional Fermi–Pasta–Ulam lattice , 2006, nlin/0612017.

[11]  J Leon,et al.  Energy transmission in the forbidden band gap of a nonlinear chain. , 2002, Physical review letters.

[12]  J. E. Mac'ias-D'iaz,et al.  An application of nonlinear supratransmission to the propagation of binary signals in weakly damped, mechanical systems of coupled oscillators , 2007 .

[13]  D. Angelov,et al.  Fluctuations in the DNA double helix , 2007 .

[14]  D. Blackmore,et al.  New Mathematical Models for Particle Flow Dynamics , 1999, nlin/9904201.

[15]  J. E. Mac'ias-D'iaz,et al.  On the propagation of binary signals in damped mechanical systems of oscillators , 2007 .

[16]  Pilar R. Gordoa,et al.  Unified approach to Miura, Bäcklund and Darboux Transformations for Nonlinear Partial Differential Equations , 1998 .

[17]  D L Shepelyansky,et al.  Low-energy chaos in the Fermi-Pasta-Ulam problem , 1996 .

[18]  Nonlinear supratransmission as a fundamental instability , 2003, nlin/0310007.

[19]  O. Narayan,et al.  Equilibration and universal heat conduction in fermi-pasta-ulam chains. , 2007, Physical review letters.

[20]  H. Kantz,et al.  Equipartition thresholds in chains of anharmonic oscillators , 1994 .

[21]  J Leon,et al.  Bistability in the sine-Gordon equation: the ideal switch. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Wattis,et al.  Discrete breathers in a two-dimensional hexagonal Fermi–Pasta–Ulam lattice , 2007 .

[23]  Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. , 2005, The Journal of chemical physics.

[24]  S. Flach,et al.  Acoustic Breathers in Two-Dimensional Lattices , 1997, cond-mat/9709048.

[25]  A. Puri,et al.  A numerical method with properties of consistency in the energy domain for a class of dissipative nonlinear wave equations with applications to a Dirichlet boundary‐value problem , 2008, 1112.5500.

[26]  Jorge Eduardo Macías-Díaz,et al.  Numerical study of the transmission of energy in discrete arrays of sine-Gordon equations in two space dimensions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.