Finite elements for elliptic problems with stochastic coefficients

[1]  N. Wiener The Homogeneous Chaos , 1938 .

[2]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[3]  Richard Bellman,et al.  Stochastic Processes in Mathematical Physics and Engineering , 1964 .

[4]  J. Osborn Spectral approximation for compact operators , 1975 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[7]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[8]  R. Geus The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue problems with application to the design of accelerator cavities , 2002 .

[9]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[10]  Christian Lage,et al.  Concepts: An object-oriented software package for partial differential equations , 2002 .

[11]  G. Schmidlin,et al.  Fast solution algorithms for integral equations in R , 2003 .

[12]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[13]  Christian Lage,et al.  Rapid solution of first kind boundary integral equations in R3 , 2003 .

[14]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..