Superregular Matrices and the Construction of Convolutional Codes having a Maximum Distance Profile

Superregular matrices are a class of lower triangular Toeplitz matrices that arise in the context of constructing convolutional codes having a maximum distance profile. These matrices are characterized by the property that no submatrix has a zero determinant unless it is trivially zero due to the lower triangular structure. In this paper, we discuss how superregular matrices may be used to construct codes having a maximum distance profile. We also introduce group actions that preserve the superregularity property and present an upper bound on the minimum size a finite field must have in order that a superregular matrix of a given size can exist over that field.

[1]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[2]  H. Gluesing-Luerssen,et al.  On the MacWilliams Identity for Convolutional Codes , 2006, IEEE Transactions on Information Theory.

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  Gérard Viennot,et al.  Enumeration of certain young tableaux with bounded height , 1986 .

[5]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[6]  A. Antoulas On recursiveness and related topics in linear systems , 1986 .

[7]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[8]  Ron M. Roth,et al.  On generator matrices of MDS codes , 1985, IEEE Trans. Inf. Theory.

[9]  Heide Gluesing-Luerssen,et al.  On the algebraic parameters of convolutional codes with cyclic structure , 2006 .

[10]  Heide Gluesing-Luerssen On the weight distribution of convolutional codes , 2005, ArXiv.

[11]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[12]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[13]  Heide Gluesing-Luerssen,et al.  On Doubly-Cyclic Convolutional Codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[14]  Neal Zierler On the MacWilliams Identity , 1973, J. Comb. Theory, Ser. A.

[15]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[16]  Heide Gluesing-Luerssen,et al.  A class of one-dimensional MDS convolutional codes , 2004, ArXiv.

[17]  Heide Gluesing-Luerssen,et al.  On Cyclic Convolutional Codes , 2002 .

[18]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .