Graph analysis of non-uniform rational B-spline-based metamodels

Over the past decade metamodels, also known as surrogate models, based on non-uniform rational B-splines (NURBs) have been developed. These metamodels exhibit unique properties that enable a wide range of computationally efficient analyses. Thus far, the analysis of these metamodels has been of a geometric nature, but in this article an approach based on graph theory is used. The properties of NURBs enable the interpretation of NURBs-based metamodels as graphs, and enable the demonstration of several analyses based on this structure. The general case of an analytically defined continuous-variable problem is given in the first example. A specific application in the field of robotic path planning constitutes the second example. Finally, an observation on the current state of this research, its merits and drawbacks, and an outline of future efforts that may increase its utility is provided.

[1]  Kwon-Hee Lee,et al.  Robust optimization considering tolerances of design variables , 2001 .

[2]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[3]  Cameron J. Turner,et al.  HyPerModels: Hyperdimensional Performance Models for engineering design , 2005 .

[4]  Sachin S. Sapatnekar,et al.  Design by optimization , 2009 .

[5]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[6]  Byung Chai Lee,et al.  Development of a simple and efficient method for robust optimization , 2002 .

[7]  Richard H. Crawford,et al.  N -Dimensional Nonuniform Rational B-Splines for Metamodeling , 2009, J. Comput. Inf. Sci. Eng..

[8]  Abiola Moruf Ajetunmobi Robust optimization using NURBs based metamodels , 2007 .

[9]  Akira Oyama,et al.  A new efficient and useful robust optimization approach - design for multi-objective six sigma , 2005, 2005 IEEE Congress on Evolutionary Computation.

[10]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[11]  Gary Chartrand,et al.  Graphs as mathematical models , 1977 .

[12]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[13]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[14]  Cameron J. Turner,et al.  Waypoint-Based Robot Navigation Using NURBs-Based Metamodels , 2011 .

[15]  G. Matheron Principles of geostatistics , 1963 .

[16]  Greg Turk,et al.  Reconstructing Surfaces by Volumetric Regularization Using Radial Basis Functions , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Cameron J. Turner,et al.  Robust Optimization and Analysis of NURBs-Based Metamodels Using Graph Theory , 2011 .

[18]  Mehrdad Tamiz,et al.  Practical Goal Programming , 2010 .

[19]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[20]  Richard H. Crawford,et al.  Robust engineering design optimization with non-uniform rational B-splines-based metamodels , 2013 .

[21]  George I. N. Rozvany,et al.  Structural and Multidisciplinary Optimization , 1995 .

[22]  Richard H. Crawford,et al.  Selecting an Appropriate Metamodel: The Case for NURBs Metamodels , 2005, DAC 2005.

[23]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[24]  Xiaoping Du,et al.  The use of metamodeling techniques for optimization under uncertainty , 2001 .

[25]  Richard H. Crawford,et al.  Global optimization of NURBs-based metamodels , 2007 .

[26]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[27]  James Evans,et al.  Optimization algorithms for networks and graphs , 1992 .

[28]  Timothy W. Simpson,et al.  Analysis of support vector regression for approximation of complex engineering analyses , 2003, DAC 2003.

[29]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[30]  J. Friedman Multivariate adaptive regression splines , 1990 .

[31]  Jack P. C. Kleijnen,et al.  A methodology for fitting and validating metamodels in simulation , 2000, Eur. J. Oper. Res..

[32]  S. Azarm,et al.  Multi-objective robust optimization using a sensitivity region concept , 2005 .

[33]  Jeong Sam Han,et al.  Robust optimization using a gradient index: MEMS applications , 2004 .

[34]  Shapour Azarm,et al.  Non-Gradient Based Parameter Sensitivity Estimation for Single Objective Robust Design Optimization , 2004 .

[35]  Claudia Baier,et al.  Principles Of Optimal Design Modeling And Computation , 2016 .

[36]  Ray Wild,et al.  Optimization Algorithms for Networks and Graphs , 1980 .

[37]  N. Cressie The origins of kriging , 1990 .

[38]  Klaudia Frankfurter,et al.  Graph Theory 1736 1936 , 2016 .