A Multiple-Feedback UWB LNA with Low Noise and Improved Linearity

ABSTRACT A 3.1–10.6 GHz CMOS low-noise improved-linearity amplifier (LNA) for ultra-wideband (UWB) applications is presented in this paper. This UWB LNA is designed with multiple-feedback networks and noise/distortion cancellation technique. For better bandwidth extension and less chip-size occupation, a transformer is combined with a shunt feedback resistor to construct the novel multiple-feedback networks. Simultaneously, a modified noise/distortion cancellation technique is adopted in the input stage, to reduce the noise figure (NF) and nonlinear distortion. Simulation results illustrate that this proposed LNA achieves a maximum gain of 14.2 dB with 7.2 mW power dissipation under 1.2 V supply voltage, while having an IIP3 of 4.2 dBm and a minimal NF of 2.5 dB. The chip size is only 0.72 mm × 0.72 mm including the testing pads (core area is 0.57 mm × 0.57 mm).

[1]  Mourad N. El-Gamal,et al.  A 0.4V ultra low-power UWB CMOS LNA employing noise cancellation , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[2]  Lv Zhao,et al.  A Low Power High Gain CMOS LNA with Multiple-Feedback Network for Low Voltage UWB Receiver , 2016, J. Circuits Syst. Comput..

[3]  R. Michael Buehrer,et al.  Ultra-Wideband Wireless Systems , 2005 .

[4]  WangXubo,et al.  A 3---10 GHz Ultra Wideband Receiver LNA in 0.13 $$\mu $$μm CMOS , 2014 .

[5]  A. Bevilacqua,et al.  An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[6]  Jichai Jeong,et al.  Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique , 2013, Microelectron. J..

[7]  Y.-S. Lin,et al.  0.99 mW 3-10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique , 2011 .

[8]  Mourad N. El-Gamal,et al.  Short Channel Output Conductance Enhancement Through Forward Body Biasing to Realize a 0.5 V 250 $\upmu \text{W}$ 0.6–4.2 GHz Current-Reuse CMOS LNA , 2016, IEEE Journal of Solid-State Circuits.

[9]  Qiuzhen Wan,et al.  Design and analysis of a 3.1–10.6GHz UWB low noise amplifier with forward body bias technique , 2015 .

[10]  Mourad N. El-Gamal,et al.  A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[11]  Daniel Teng,et al.  A 3–10 GHz Ultra Wideband Receiver LNA in 0.13 $$\mu $$μm CMOS , 2014, Circuits Syst. Signal Process..

[12]  Jawar Singh,et al.  A low power and high gain CMOS LNA for UWB applications in 90 nm CMOS process , 2015, Microelectron. J..

[13]  Mahdi Parvizi,et al.  An Ultra-Low-Power Wideband Inductorless CMOS LNA With Tunable Active Shunt-Feedback , 2016, IEEE Transactions on Microwave Theory and Techniques.

[14]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[15]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[16]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[17]  Igor M. Filanovsky,et al.  An Area-Efficient Multistage 3.0- to 8.5-GHz CMOS UWB LNA Using Tunable Active Inductors , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  S. M. Rezaul Hasan,et al.  Series peaked noise matched g m -boosted 3.1-10.6 GHz CG CMOS differential LNA for UWB WiMedia , 2011 .

[19]  Jean-Fu Kiang,et al.  Design of Wideband LNAs Using Parallel-to-Series Resonant Matching Network Between Common-Gate and Common-Source Stages , 2011, IEEE Transactions on Microwave Theory and Techniques.

[20]  Shen-Iuan Liu,et al.  A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers , 2007, IEEE Journal of Solid-State Circuits.

[21]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.