Fuzzy integrals—what are they?
暂无分享,去创建一个
[1] Henri Prade,et al. Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..
[2] R. Mesiar. Choquet-like Integrals , 1995 .
[3] S. Weber. Two integrals and some modified versions-critical remarks , 1986 .
[4] George J. Klir,et al. Fuzzy sets, uncertainty and information , 1988 .
[5] L. Zadeh. Fuzzy sets as a basis for a theory of possibility , 1999 .
[6] G. Klir,et al. Fuzzy Measure Theory , 1993 .
[7] N. Shilkret. Maxitive measure and integration , 1971 .
[8] Anna Kolesárová,et al. Triangular norm-based iterative compensatory operators , 1999, Fuzzy Sets Syst..
[9] Radko Mesiar,et al. Pseudo-arithmetical operations as a basis for the general measure and integration theory , 2004, Inf. Sci..
[10] Luis M. de Campos,et al. Characterization and comparison of Sugeno and Choquet integrals , 1992 .
[11] J. Šipoš,et al. Integral with respect to a pre-measure , 1979 .
[12] E. Klement. Characterization of fuzzy measures constructed by means of triangular norms , 1982 .
[13] S. Greco. Bipolar Sugeno and Choquet integrals , 2002 .
[14] Andrea Mesiarová-Zemánková,et al. Construction of aggregation operators: new composition method , 2003, Kybernetika.
[15] G. Choquet. Theory of capacities , 1954 .
[16] L. Zadeh. Probability measures of Fuzzy events , 1968 .
[17] I. Dobrakov,et al. On submeasures. II. , 1980 .
[18] Haruki Imaoka,et al. On a Subjective Evaluation Model by a Generalized Fuzzy Integral , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[19] S. Ovchinnikov,et al. Integral Representation of Invariant Functionals , 2000 .
[20] R. Mesiar,et al. CHAPTER 33 – Monotone Set Functions-Based Integrals , 2002 .
[21] Peter Struk,et al. Extremal fuzzy integrals , 2006, Soft Comput..
[22] Radko Mesiar,et al. Measure-based aggregation operators , 2004, Fuzzy Sets Syst..
[23] Michio Sugeno,et al. Fuzzy t -conorm integral with respect to fuzzy measures: generalization of Sugeno integral and choquet integral , 1991 .
[24] Roger B. Nelsen,et al. Copulas, Characterization, Correlation, and Counterexamples , 1995 .
[25] M. Grabisch,et al. Bi-capacities for decision making on bipolar scales , 2002 .
[26] Wolfgang Sander,et al. Multiplication, distributivity and fuzzy-integral. I , 2005, Kybernetika.
[27] D. Denneberg. Non-additive measure and integral , 1994 .
[28] G. Vitali,et al. Sulla definizione di integrale delle funzioni di una variabile , 1925 .
[29] Vicenç Torra,et al. Generalization of the twofold integral and its interpretation , 2003, EUSFLAT Conf..
[30] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[31] Radko Mesiar,et al. On Tarski's contribution to the additive measure theory and its consequences , 2004, Ann. Pure Appl. Log..
[32] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[33] R. Nelsen. An Introduction to Copulas , 1998 .
[34] Michel Grabisch,et al. The symmetric Sugeno integral , 2003, Fuzzy Sets Syst..
[35] E. Pap. Null-Additive Set Functions , 1995 .
[36] Michel Grabisch,et al. Fuzzy Measures and Integrals , 1995 .
[37] Jean-Luc Marichal,et al. On Sugeno integral as an aggregation function , 2000, Fuzzy Sets Syst..
[38] D. Schmeidler. Integral representation without additivity , 1986 .
[39] H. Carter. Fuzzy Sets and Systems — Theory and Applications , 1982 .
[40] Radko Mesiar,et al. Linear non-additive set-functions , 2002, Int. J. Gen. Syst..