Fuzzy integrals—what are they?

We bring an overview of fuzzy integrals, including historical remarks. These integrals can be viewed as an average membership value of fuzzy sets, and they are related to fuzzy measures. The Choquet integral can be traced back to 1925. The Sugeno integral has a predecessor in the Shilkret integral from 1971. Some other fuzzy integrals and the corresponding discrete integrals are introduced too. A closer look to the geometric interpretation of fuzzy integrals is also given, resulting among others the weakest and the strongest regular fuzzy integral. An application of the Choquet integral to additive impreciseness measuring of fuzzy quantities with interesting consequences for fuzzy measures is presented. Finally, recent development and streaming of the fuzzy integral theory is discussed. © 2008 Wiley Periodicals, Inc.

[1]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[2]  R. Mesiar Choquet-like Integrals , 1995 .

[3]  S. Weber Two integrals and some modified versions-critical remarks , 1986 .

[4]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[5]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[6]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[7]  N. Shilkret Maxitive measure and integration , 1971 .

[8]  Anna Kolesárová,et al.  Triangular norm-based iterative compensatory operators , 1999, Fuzzy Sets Syst..

[9]  Radko Mesiar,et al.  Pseudo-arithmetical operations as a basis for the general measure and integration theory , 2004, Inf. Sci..

[10]  Luis M. de Campos,et al.  Characterization and comparison of Sugeno and Choquet integrals , 1992 .

[11]  J. Šipoš,et al.  Integral with respect to a pre-measure , 1979 .

[12]  E. Klement Characterization of fuzzy measures constructed by means of triangular norms , 1982 .

[13]  S. Greco Bipolar Sugeno and Choquet integrals , 2002 .

[14]  Andrea Mesiarová-Zemánková,et al.  Construction of aggregation operators: new composition method , 2003, Kybernetika.

[15]  G. Choquet Theory of capacities , 1954 .

[16]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[17]  I. Dobrakov,et al.  On submeasures. II. , 1980 .

[18]  Haruki Imaoka,et al.  On a Subjective Evaluation Model by a Generalized Fuzzy Integral , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  S. Ovchinnikov,et al.  Integral Representation of Invariant Functionals , 2000 .

[20]  R. Mesiar,et al.  CHAPTER 33 – Monotone Set Functions-Based Integrals , 2002 .

[21]  Peter Struk,et al.  Extremal fuzzy integrals , 2006, Soft Comput..

[22]  Radko Mesiar,et al.  Measure-based aggregation operators , 2004, Fuzzy Sets Syst..

[23]  Michio Sugeno,et al.  Fuzzy t -conorm integral with respect to fuzzy measures: generalization of Sugeno integral and choquet integral , 1991 .

[24]  Roger B. Nelsen,et al.  Copulas, Characterization, Correlation, and Counterexamples , 1995 .

[25]  M. Grabisch,et al.  Bi-capacities for decision making on bipolar scales , 2002 .

[26]  Wolfgang Sander,et al.  Multiplication, distributivity and fuzzy-integral. I , 2005, Kybernetika.

[27]  D. Denneberg Non-additive measure and integral , 1994 .

[28]  G. Vitali,et al.  Sulla definizione di integrale delle funzioni di una variabile , 1925 .

[29]  Vicenç Torra,et al.  Generalization of the twofold integral and its interpretation , 2003, EUSFLAT Conf..

[30]  A. Tarski,et al.  Une contribution à la théorie de la mesure , 1930 .

[31]  Radko Mesiar,et al.  On Tarski's contribution to the additive measure theory and its consequences , 2004, Ann. Pure Appl. Log..

[32]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[33]  R. Nelsen An Introduction to Copulas , 1998 .

[34]  Michel Grabisch,et al.  The symmetric Sugeno integral , 2003, Fuzzy Sets Syst..

[35]  E. Pap Null-Additive Set Functions , 1995 .

[36]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[37]  Jean-Luc Marichal,et al.  On Sugeno integral as an aggregation function , 2000, Fuzzy Sets Syst..

[38]  D. Schmeidler Integral representation without additivity , 1986 .

[39]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[40]  Radko Mesiar,et al.  Linear non-additive set-functions , 2002, Int. J. Gen. Syst..