Advances in Ultra Short Pulse Laser based Parallel Processing using a Spatial Light Modulator

Abstract Presented here are latest advances in ultra short pulse laser based parallel processing using a spatial light modulator (SLM), which has the potential for use in high throughput precision patterning of photovoltaic and other device layers. Ultra short laser pulses allow selective material removal with minimal energy density, while here a computer- generated hologram driven reflective SLM is used to transform a single beam into multiple beamlets for increased process throughput. Based on this technique, the precision patterning of silicon, titanium, thin film ITO and metal on flexible and glass substrates is demonstrated and the benefits and current limitations discussed.

[1]  A. Weiner,et al.  Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. , 1990, Optics letters.

[2]  J. Huignard,et al.  Direct ultrafast laser micro-structuring of materials using programmable beam shaping , 2007 .

[3]  Stuart Edwardson,et al.  Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns , 2012 .

[4]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[5]  Stuart Edwardson,et al.  Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring , 2009 .

[6]  Q. Mu,et al.  Phase-only liquid crystal spatial light modulator for wavefront correction with high precision. , 2004, Optics express.

[7]  Stuart Edwardson,et al.  Diffractive Multi-Beam Ultra-fast Laser Micro-processing using a Spatial Light Modulator , 2009 .

[8]  M J Padgett,et al.  Hands-on with optical tweezers: a multitouch interface for holographic optical trapping. , 2009, Optics express.

[9]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[10]  Nobuo Nishida,et al.  Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. , 2006, Optics letters.

[11]  J. Huignard,et al.  100-kHz diffraction-limited femtosecond laser micromachining , 2005 .

[12]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.

[13]  Yoshio Hayasaki,et al.  Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. , 2007, Applied optics.

[14]  Stuart Edwardson,et al.  Diffractive multi-beam surface micro-processing using 10 ps laser pulses , 2009 .

[15]  Bo Sun,et al.  Theory of holographic optical trapping. , 2008, Optics express.

[16]  Stuart Edwardson,et al.  High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator , 2008 .

[17]  Joachim P Spatz,et al.  Symmetry dependence of holograms for optical trapping. , 2005, Optics letters.

[18]  Yoshio Hayasaki,et al.  Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing , 2007 .

[19]  Eric Audouard,et al.  Programmable focal spot shaping of amplified femtosecond laser pulses. , 2005, Optics letters.