Ultraspherical Gauss-Kronrod Quadrature Is Not Possible for λ > 3

With the help of a new representation of the Stieltjes polynomial it is shown by using Bessel functions that the Stieltjes polynomial with respect to the ultraspherical weight function with parameter $\lambda$ has only few real zeros for $\lambda > 3$ and sufficiently large $n$. Since the nodes of the Gauss--Kronrod quadrature formulae subdivide into the zeros of the Stieltjes polynomial and the Gaussian nodes, it follows immediately that Gauss--Kronrod quadrature is not possible for $\lambda > 3$. On the other hand, for $\lambda = 3$ and sufficiently large $n$, even partially positive Gauss--Kronrod quadrature is possible.

[1]  Giovanni Monegato,et al.  Stieltjes Polynomials and Related Quadrature Rules , 1982 .

[2]  Sven Ehrich Asymptotic properties of Stieltjes polynomials and Gauss-Kronrod quadrature formulae , 1995 .

[3]  Franz Peherstorfer,et al.  On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-Kronrod quadrature formulas , 1992 .

[4]  Sven Ehrich Asymptotic behaviour of Stieltjes polynomials for ultraspherical weight functions , 1995 .

[5]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[6]  Franz Peherstorfer,et al.  Stieltjes polynomials and functions of the second kind , 1995 .

[7]  F. W. J. Olver,et al.  The asymptotic solution of linear differential equations of the second order in a domain containing one transition point , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  Giovanni Monegato,et al.  Positivity of the weights of extended Gauss-Legendre quadrature rules , 1978 .

[9]  Franz Peherstorfer Finite perturbations of orthogonal polynomials , 1992 .

[10]  Philip Rabinowitz,et al.  Gauss-Kronrod integration rules for Cauchy principal value integrals , 1983 .

[11]  David Elliott,et al.  Uniform asymptotic expansions of the Jacobi polynomials and an associated function , 1971 .

[12]  Paul Nevai A new class of orthogonal polynomials , 1984 .

[13]  David Dickinson On certain polynomials associated with orthogonal polynomials. , 1958 .

[14]  A. Stroud,et al.  Nodes and Weights of Quadrature Formulas , 1965 .

[15]  É. Picard,et al.  Correspondance d'Hermite et de Stieltjes , 2022 .

[16]  Sotirios E. Notaris,et al.  An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions , 1988 .

[17]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.