Modeling and analysis of an ultra-stable subluminal laser

[1]  Laser Electronics , 2018, Introductory Matter Physics.

[2]  M. Shahriar,et al.  High-speed modulation in ladder transitions in Rb atoms using high-pressure buffer gas. , 2015, Optics express.

[3]  Zifan Zhou,et al.  Effect of multiorder harmonics in a double-Raman pumped gain medium for a superluminal laser , 2015 .

[4]  David D. Smith Fast Light Optical Gyroscopes , 2015 .

[5]  Albert T. Rosenberger,et al.  Fast-light enhancement of an optical cavity by polarization mode coupling , 2014 .

[6]  M. Shahriar,et al.  Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation , 2013, 1309.1130.

[7]  Lars Rippe,et al.  Spectral engineering of slow light, cavity line narrowing, and pulse compression. , 2013, Physical review letters.

[8]  M. Sabooni,et al.  Three orders of magnitude cavity-linewidth narrowing by slow light in a rare-earth-ion-doped crystal cavity , 2013, 1304.4456.

[9]  Jacob Scheuer,et al.  Theoretical study on Brillouin fiber laser sensor based on white light cavity. , 2012, Optics express.

[10]  Glen P. Perram,et al.  Diode-pumped alkali laser-bleached wave dynamics , 2012, Optics/Photonics in Security and Defence.

[11]  V. A. Eroshenko,et al.  Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation , 2012 .

[12]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[13]  M S Shahriar,et al.  Superluminal ring laser for hypersensitive sensing. , 2010, Optics express.

[14]  M. Shahriar,et al.  Pump–probe model for the Kramers–Kronig relations in a laser , 2010, 1003.3686.

[15]  Jean-Claude Diels,et al.  Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium , 2009 .

[16]  Jean-Claude Diels,et al.  Dispersion-Enhanced Laser Gyroscope , 2008 .

[17]  M. Salit,et al.  Application of fast-light in gravitational wave detection with interferometers and resonators , 2008 .

[18]  M. S. Shahriar,et al.  Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator , 2008 .

[19]  J. Evers,et al.  Four-wave mixing enhanced white-light cavity , 2008, 0806.2450.

[20]  William F. Krupke,et al.  Diode pumped alkali lasers (DPALs): an overview , 2008, High-Power Laser Ablation.

[21]  Boris V. Zhdanov,et al.  Multiple laser diode array pumped Cs laser with 48W output power , 2008 .

[22]  Min Xiao,et al.  White-light cavity with competing linear and nonlinear dispersions , 2008 .

[23]  M. S. Shahriar,et al.  Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light , 2007 .

[24]  M. Shahriar,et al.  Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor. , 2006, Physical review letters.

[25]  Boris V. Zhdanov,et al.  Highly efficient optically pumped cesium vapor laser , 2006 .

[26]  M. Shahriar,et al.  Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing , 2005, quant-ph/0512259.

[27]  Keisuke Goda,et al.  Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers , 2005, gr-qc/0508102.

[28]  R-H Rinkleff,et al.  The Concept of White Light Cavities Using Atomic Phase Coherence , 2005 .

[29]  A. Wicht,et al.  The Concept of White Light Cavities Using Atomic Phase Coherence , 2005 .

[30]  V. K. Kanz,et al.  End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling , 2004 .

[31]  Raymond J. Beach,et al.  New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper) , 2004, SPIE High-Power Laser Ablation.

[32]  V Keith Kanz,et al.  Resonance transition 795-nm rubidium laser. , 2003, Optics letters.

[33]  D. Steck Rubidium 85 D Line Data , 2008 .

[34]  Karsten Danzmann,et al.  Anomalous dispersion of transparent atomic two- and three-level ensembles , 2002 .

[35]  B. T. King Application of superresolution techniques to ring laser gyroscopes: exploring the quantum limit. , 2000, Applied optics.

[36]  Z. Konefał,et al.  Observation of collision induced processes in rubidium-ethane vapour , 1999 .

[37]  M. Scully,et al.  Intracavity electromagnetically induced transparency. , 1998, Optics letters.

[38]  Karsten Danzmann,et al.  White-light cavities, atomic phase coherence, and gravitational wave detectors , 1997 .

[39]  S. Merhav The Ring Laser Gyro , 1996 .

[40]  P. Kumar,et al.  Sodium Raman laser: direct measurements of the narrow-band Raman gain. , 1992, Optics letters.

[41]  J. Shapiro,et al.  Observation of Raman-shifted oscillation near the sodium D lines. , 1985, Optics letters.

[42]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[43]  Irl W. Smith,et al.  Laser gyro at quantum limit , 1980 .

[44]  Ian J. Spalding,et al.  Laser physics , 1977, Nature.

[45]  G. Troup,et al.  The use of the modified Kramers-Kronig relation in the rate equation approach of laser theory , 1973 .

[46]  H. C. Bolton,et al.  The modification of the Kronig-Kramers relations under saturation conditions , 1969 .

[47]  J. Singer Advances in quantum electronics , 1961 .

[48]  Maurice A. Biot,et al.  General Theorems on the Equivalence of Group Velocity and Energy Transport , 1957 .