Big Data and Automatic Detection of Topics: Social Network Texts

This paper proposes the analysis of the influence of terms that express feelings in the automatic detection of topics in social networks. This proposal uses an ontology-based methodology which incorporates the ability to identify and eliminate those terms that present a sentimental orientation in social network texts, which can negatively influence the detection of topics. To this end, two resources were used to analyze feelings in order to detect these terms. The proposed system was evaluated with real data sets from the Twitter and Facebook social networks in English and Spanish respectively, demonstrating in both cases the influence of sentimentally oriented terms in the detection of topics in social network texts.

[1]  Jianping Zeng,et al.  Web objectionable text content detection using topic modeling technique , 2013, Expert Syst. Appl..

[2]  Norman R. Swanson,et al.  Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models , 1997 .

[3]  Sebastián Ventura,et al.  Educational Data Mining: A Review of the State of the Art , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Sebastián Ventura,et al.  Educational data mining: A survey from 1995 to 2005 , 2007, Expert Syst. Appl..

[5]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[6]  Fernando Villada,et al.  Aplicación de las Redes Neuronales al Pronóstico de Precios en el Mercado de Valores , 2012 .

[7]  Marco Pennacchiotti,et al.  Investigating topic models for social media user recommendation , 2011, WWW.

[8]  Georg Ruß,et al.  Data Mining of Agricultural Yield Data: A Comparison of Regression Models , 2009, ICDM.

[9]  Dan Klein,et al.  Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network , 2003, NAACL.

[10]  Amelec Viloria,et al.  Measures of Concentration and Stability: Two Pedagogical Tools for Industrial Organization Courses , 2018, ICSI.

[11]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[12]  Yanghui Rao,et al.  Sentiment topic models for social emotion mining , 2014, Inf. Sci..

[13]  Bin Zhang,et al.  Cluster Based Detection and Analysis of Internet Topics , 2011, 2011 Fourth International Symposium on Computational Intelligence and Design.

[14]  Eliana Mirledy Toro Ocampo,et al.  PRONÓSTICO DE VENTAS USANDO REDES NEURONALES , 2004 .

[15]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[16]  Amelec Viloria,et al.  Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company , 2016 .

[17]  Hongfei Yan,et al.  Comparing Twitter and Traditional Media Using Topic Models , 2011, ECIR.

[18]  M. Amparo Vila,et al.  An ontology‐based framework for automatic topic detection in multilingual environments , 2018, Int. J. Intell. Syst..

[19]  Tao Li,et al.  Semi-supervised Hierarchical Clustering , 2011, 2011 IEEE 11th International Conference on Data Mining.

[20]  Ravi Sankar,et al.  Time Series Prediction Using Support Vector Machines: A Survey , 2009, IEEE Computational Intelligence Magazine.

[21]  James R. Jones,et al.  Crop Yield Prediction Using Time Series Models , 2014 .

[22]  Tobias Scheffer,et al.  Finding association rules that trade support optimally against confidence , 2001, Intell. Data Anal..

[23]  Egoitz Laparra,et al.  Multilingual Central Repository version 3.0 , 2012, LREC.