PSEUDO-SPLINES, WAVELETS AND FRAMELETS
暂无分享,去创建一个
[1] G. Pólya,et al. Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.
[2] Helly. Aufgaben und Lehrsätze aus der Analysis , 1928 .
[3] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[4] J. W. Brown,et al. Complex Variables and Applications , 1985 .
[5] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[6] C. R. Deboor,et al. A practical guide to splines , 1978 .
[7] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[8] Wolfgang Dahmen,et al. Translates of multivarlate splines , 1983 .
[9] R. Jia. Linear independence of translates of a box spline , 1984 .
[10] R. Jia. Local linear independence of the translates of a box spline , 1985 .
[11] C. Micchelli,et al. On the local linear independence of translates of a box spline , 1985 .
[12] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[13] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[14] A. Ron. A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .
[15] A. Ron,et al. On the integer translates of compactly supported function: dual bases and linear projectors , 1990 .
[16] Amos Ron,et al. Factorization theorems for univariate splines on regular grids , 1990 .
[17] C. Micchelli,et al. Stationary Subdivision , 1991 .
[18] Charles A. Micchelli,et al. Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.
[19] I. Daubechies,et al. A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .
[20] C. Chui. Wavelets: A Tutorial in Theory and Applications , 1992 .
[21] A. Cohen,et al. Regularité des bases d'ondelettes et mesures ergodiques , 1992 .
[22] C. Chui,et al. On compactly supported spline wavelets and a duality principle , 1992 .
[23] C. Chen,et al. Principles and Techniques in Combinatorics , 1992 .
[24] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[25] Zuowei Shen,et al. Wavelets and pre-wavelets in low dimensions , 1992 .
[26] Hans Volkmer. On the regularity of wavelets , 1992, IEEE Trans. Inf. Theory.
[27] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[28] R. DeVore,et al. On the construction of multivariate (pre)wavelets , 1993 .
[29] Albert Cohen,et al. Biorthogonal wavelets , 1993 .
[30] DaubechiesIngrid. Orthonormal bases of compactly supported wavelets II , 1993 .
[31] R. Jia,et al. Stability and linear independence associated with wavelet decompositions , 1993 .
[32] Zuowei Shen,et al. Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.
[33] A. Ron,et al. Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.
[34] Zuowei Shen. Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .
[35] P. Lemarié–Rieusset. On the Existence of Compactly Supported Dual Wavelets , 1997 .
[36] S. L. Lee,et al. Stability and orthonormality of multivariate refinable functions , 1997 .
[37] Pierre Gilles Lemarié-Rieusset. Fonctions d'échelles interpolantes, polynômes de Bernstein et ondelettes non stationnaires , 1997 .
[38] Amos Ron. Smooth refinable functions provide good approximation orders , 1997 .
[39] A. Ron,et al. Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .
[40] Qiyu Sun,et al. A class of $M$-dilation scaling functions with regularity growing proportionally to filter support width , 1998 .
[41] Zuowei Shen. Refinable function vectors , 1998 .
[42] G. Greuel,et al. SINGULAR version 1.2 User Manual , 1998 .
[43] Zuowei Shen,et al. Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .
[44] Qiyu Sun,et al. Asymptotic regularity of Daubechies’ scaling functions , 1999 .
[45] Qingtang Jiang,et al. On Existence and Weak Stability of Matrix Refinable Functions , 1999 .
[46] R. Jia. Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .
[47] A. Cohen,et al. Regularity of Multivariate Refinable Functions , 1999 .
[48] Andrei Khodakovsky,et al. Progressive geometry compression , 2000, SIGGRAPH.
[49] Bin Han,et al. Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..
[50] Bin Han,et al. Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments , 2000, Adv. Comput. Math..
[51] A. Ron,et al. The Sobolev Regularity of Refinable Functions , 2000 .
[52] C. Chui,et al. Compactly supported tight frames associated with refinable functions , 2000 .
[53] I. Selesnick. Smooth Wavelet Tight Frames with Zero Moments , 2001 .
[54] Maura Salvatori,et al. Multivariate compactly supported biorthogonal spline wavelets , 2002 .
[55] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[56] Bin Han,et al. Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..
[57] Ivan W. Selesnick,et al. Symmetric nearly shift-invariant tight frame wavelets , 2005, IEEE Transactions on Signal Processing.
[58] Charles A. Micchelli,et al. Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.
[59] Say Song Goh,et al. Symmetric and antisymmetric tight wavelet frames , 2006 .
[60] Bin Dong,et al. Linear independence of pseudo-splines , 2006 .
[61] Bin Dong,et al. Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .
[62] Bin Han,et al. Wavelets with Short Support , 2006, SIAM J. Math. Anal..