PSEUDO-SPLINES, WAVELETS AND FRAMELETS

[1]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.

[2]  Helly Aufgaben und Lehrsätze aus der Analysis , 1928 .

[3]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[4]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[5]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[6]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[7]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[8]  Wolfgang Dahmen,et al.  Translates of multivarlate splines , 1983 .

[9]  R. Jia Linear independence of translates of a box spline , 1984 .

[10]  R. Jia Local linear independence of the translates of a box spline , 1985 .

[11]  C. Micchelli,et al.  On the local linear independence of translates of a box spline , 1985 .

[12]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[13]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[14]  A. Ron A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .

[15]  A. Ron,et al.  On the integer translates of compactly supported function: dual bases and linear projectors , 1990 .

[16]  Amos Ron,et al.  Factorization theorems for univariate splines on regular grids , 1990 .

[17]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[18]  Charles A. Micchelli,et al.  Using the Refinement Equations for the Construction of Pre-Wavelets II: Powers of Two , 1991, Curves and Surfaces.

[19]  I. Daubechies,et al.  A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME , 1992 .

[20]  C. Chui Wavelets: A Tutorial in Theory and Applications , 1992 .

[21]  A. Cohen,et al.  Regularité des bases d'ondelettes et mesures ergodiques , 1992 .

[22]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[23]  C. Chen,et al.  Principles and Techniques in Combinatorics , 1992 .

[24]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[25]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[26]  Hans Volkmer On the regularity of wavelets , 1992, IEEE Trans. Inf. Theory.

[27]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[28]  R. DeVore,et al.  On the construction of multivariate (pre)wavelets , 1993 .

[29]  Albert Cohen,et al.  Biorthogonal wavelets , 1993 .

[30]  DaubechiesIngrid Orthonormal bases of compactly supported wavelets II , 1993 .

[31]  R. Jia,et al.  Stability and linear independence associated with wavelet decompositions , 1993 .

[32]  Zuowei Shen,et al.  Multiresolution and wavelets , 1994, Proceedings of the Edinburgh Mathematical Society.

[33]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[34]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[35]  P. Lemarié–Rieusset On the Existence of Compactly Supported Dual Wavelets , 1997 .

[36]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[37]  Pierre Gilles Lemarié-Rieusset Fonctions d'échelles interpolantes, polynômes de Bernstein et ondelettes non stationnaires , 1997 .

[38]  Amos Ron Smooth refinable functions provide good approximation orders , 1997 .

[39]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[40]  Qiyu Sun,et al.  A class of $M$-dilation scaling functions with regularity growing proportionally to filter support width , 1998 .

[41]  Zuowei Shen Refinable function vectors , 1998 .

[42]  G. Greuel,et al.  SINGULAR version 1.2 User Manual , 1998 .

[43]  Zuowei Shen,et al.  Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .

[44]  Qiyu Sun,et al.  Asymptotic regularity of Daubechies’ scaling functions , 1999 .

[45]  Qingtang Jiang,et al.  On Existence and Weak Stability of Matrix Refinable Functions , 1999 .

[46]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[47]  A. Cohen,et al.  Regularity of Multivariate Refinable Functions , 1999 .

[48]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[49]  Bin Han,et al.  Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..

[50]  Bin Han,et al.  Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments , 2000, Adv. Comput. Math..

[51]  A. Ron,et al.  The Sobolev Regularity of Refinable Functions , 2000 .

[52]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[53]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[54]  Maura Salvatori,et al.  Multivariate compactly supported biorthogonal spline wavelets , 2002 .

[55]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[56]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[57]  Ivan W. Selesnick,et al.  Symmetric nearly shift-invariant tight frame wavelets , 2005, IEEE Transactions on Signal Processing.

[58]  Charles A. Micchelli,et al.  Using the refinement equation for the construction of pre-wavelets , 1991, Numerical Algorithms.

[59]  Say Song Goh,et al.  Symmetric and antisymmetric tight wavelet frames , 2006 .

[60]  Bin Dong,et al.  Linear independence of pseudo-splines , 2006 .

[61]  Bin Dong,et al.  Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .

[62]  Bin Han,et al.  Wavelets with Short Support , 2006, SIAM J. Math. Anal..