Anti-integrability for Three-Dimensional Quadratic Maps

We study the dynamics of the three-dimensional quadratic diffeomorphism using a concept first introduced thirty years ago for the Frenkel-Kontorova model of condensed matter physics: the anti-integrable (AI) limit. At the traditional AI limit, orbits of a map degenerate to sequences of symbols and the dynamics is reduced to the shift operator, a pure form of chaos. Under nondegeneracy conditions, a contraction mapping argument can show that infinitely many AI states continue to orbits of the deterministic map. For the 3D quadratic map, the AI limit that we study is a quadratic correspondence whose branches, a pair of one-dimensional maps, introduce symbolic dynamics on two symbols. The AI states, however, are nontrivial orbits of this correspondence. The character of these orbits depends on whether the quadratic takes the form of an ellipse, a hyperbola, or a pair of lines. Using contraction arguments, we find parameter domains for each case such that each symbol sequence corresponds to a unique AI state. In some parameter domains, sufficient conditions are then found for each such AI state to continue away from the limit to become an orbit of the original 3D map. Numerical continuation methods extend these results, allowing computation of bifurcations and obtaining orbits with horseshoe-like structures and intriguing self-similarity. We conjecture that pairs of periodic orbits in saddle-node or period doubling bifurcations have symbol sequences that differ in exactly one position.

[1]  A. Kazakov,et al.  On discrete Lorenz-like attractors. , 2021, Chaos.

[2]  T. Chen,et al.  Chaotic orbits for differentiable maps near anti-integrable limits , 2016 .

[3]  S. Bolotin,et al.  The anti-integrable limit , 2015, 1601.06093.

[4]  Hung-Ju Chen,et al.  Stability of symbolic embeddings for difference equations and their multidimensional perturbations , 2015 .

[5]  Ming-Chia Li,et al.  Approximation of entropy on hyperbolic sets for one-dimensional maps and their multidimensional perturbations , 2010 .

[6]  Jonq Juang,et al.  Chaotic difference equations in two variables and their multidimensional perturbations , 2008 .

[7]  J. Meiss,et al.  Nilpotent normal form for divergence-free vector fields and volume-preserving maps , 2007, 0706.1575.

[8]  Ming-Chia Li,et al.  Topological horseshoes for perturbations of singular difference equations , 2006 .

[9]  Yi-Chiuan Chen,et al.  Smale horseshoe via the anti-integrability , 2006 .

[10]  I. I. Ovsyannikov,et al.  CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION , 2005, nlin/0510061.

[11]  James D. Meiss,et al.  Symbolic Codes for Rotational Orbits , 2004, SIAM J. Appl. Dyn. Syst..

[12]  James D. Meiss,et al.  Homoclinic bifurcations for the Hénon map , 1999, chao-dyn/9904019.

[13]  James D. Meiss,et al.  Computing periodic orbits using the anti-integrable limit , 1998, chao-dyn/9802014.

[14]  J. Meiss,et al.  Quadratic volume preserving maps , 1997, chao-dyn/9706001.

[15]  S. Aubry Anti-integrability in dynamic and variational problems , 1995 .

[16]  S. Aubry,et al.  Chaotic trajectories in the standard map. The concept of anti-integrability , 1990 .

[17]  S. Bullett Dynamics of quadratic correspondences , 1988 .

[18]  Robert L. Devaney,et al.  Shift automorphisms in the Hénon mapping , 1979, Hamiltonian Dynamical Systems.

[19]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[20]  M. Botur,et al.  Lagrangian coherent structures , 2009 .

[21]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[22]  J. Meiss,et al.  Quadratic volume preserving maps: an extension of a result of Moser , 1999 .

[23]  Richard McGehee,et al.  Attractors for closed relations on compact Hausdorff spaces , 1992 .

[24]  James D. Meiss,et al.  Cantori for symplectic maps near the anti-integrable limit , 1992 .