Remotely Sensing the Biophysical Drivers of Sardinella aurita Variability in Ivorian Waters

The coastal regions of the Gulf of Guinea constitute one of the major marine ecosystems, producing essential living marine resources for the populations of Western Africa. In this region, the Ivorian continental shelf is under pressure from various anthropogenic sources, which have put the regional fish stocks, especially Sardinella aurita, the dominant pelagic species in Ivorian industrial fishery landings, under threat from overfishing. Here, we combine in situ observations of Sardinella aurita catch, temperature, and nutrient profiles, with remote-sensing ocean-color observations, and reanalysis data of wind and sea surface temperature, to investigate relationships between Sardinella aurita catch and oceanic primary producers (including biomass and phenology of phytoplankton), and between Sardinella aurita catch and environmental conditions (including upwelling index, and turbulent mixing). We show that variations in Sardinella aurita catch in the following year may be predicted, with a confidence of 78%, based on a bilinear model using only physical variables, and with a confidence of 40% when using only biological variables. However, the physics-based model alone is not sufficient to explain the mechanism driving the year-to-year variations in Sardinella aurita catch. Based on the analysis of the relationships between biological variables, we demonstrate that in the Ivorian continental shelf, during the study period 1998–2014, population dynamics of Sardinella aurita, and oceanic primary producers, may be controlled, mainly by top-down trophic interactions. Finally, based on the predictive models constructed here, we discuss how they can provide powerful tools to support evaluation and monitoring of fishing activity, which may help towards the development of a Fisheries Information and Management System.

[1]  K. Sherman Sustainability of Resources in Large Marine Ecosystems , 2019, Food Chains, Yields, Models, and Management of Large Marine Ecosystems.

[2]  B. Gold,et al.  Food Chains, Yields, Models, and Management of Large Marine Ecosystems , 2019 .

[3]  M. Hervé,et al.  Seasonal Variation of Thermocline Depth: Consequence on Nutrient Availability in the Ivorian Coastal Zone , 2017 .

[4]  E. Tzanatos,et al.  Resilience and regime shifts in a marine biodiversity hotspot , 2017, Scientific Reports.

[5]  T. Platt,et al.  An Exact Solution For Modeling Photoacclimation of the Carbon-to-Chlorophyll Ratio in Phytoplankton , 2017, Front. Mar. Sci..

[6]  F. Mélin,et al.  Variability of chlorophyll-a concentration in the Gulf of Guinea and its relation to physical oceanographic variables , 2017, Progress in oceanography.

[7]  B. Bourlès,et al.  A biophysical model of S. aurita early life history in the northern Gulf of Guinea , 2017 .

[8]  R. Asch,et al.  Climate, Anchovy, and Sardine. , 2017, Annual review of marine science.

[9]  Michael S. Harvey,et al.  Red List of Marine Bony Fishes of the Eastern Central Atlantic , 2016 .

[10]  Belouahem Samih Ecosystemic Approach to Fisheries , 2015 .

[11]  N. Dessay,et al.  Changes in Vegetation and Rainfall over West Africa during the Last Three Decades (1981-2010) , 2015 .

[12]  M. Peck,et al.  Effects of prey concentration on ingestion rates of European sardine Sardina pilchardus larvae in the laboratory , 2014 .

[13]  Robert J. W. Brewin,et al.  Plankton indicators and ocean observing systems: support to the marine ecosystem state assessment , 2014 .

[14]  Bo-Cai Gao,et al.  Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA , 2014, Remote. Sens..

[15]  D. Pauly,et al.  What catch data can tell us about the status of global fisheries , 2012 .

[16]  Corinne Le Quéré,et al.  Phytoplankton phenology in the global ocean , 2012 .

[17]  François Steinmetz,et al.  Atmospheric correction in presence of sun glint: application to MERIS. , 2011, Optics express.

[18]  H. Bouman,et al.  Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea , 2009 .

[19]  T. Platt,et al.  Basin-Scale Coherence in Phenology of Shrimps and Phytoplankton in the North Atlantic Ocean , 2009, Science.

[20]  P. Gros Production durable de ressources alimentaires marines : des pêcheries viables dans un monde changeant , 2008 .

[21]  T. Platt,et al.  Ecological indicators for the pelagic zone of the ocean from remote sensing , 2008 .

[22]  C. Mullon,et al.  Investigating remote synchronous patterns in fisheries , 2003 .

[23]  Xiaoping Zhou,et al.  Marine ecology: Spring algal bloom and larval fish survival , 2003, Nature.

[24]  D. A. Siegel,et al.  The North Atlantic Spring Phytoplankton Bloom and Sverdrup's Critical Depth Hypothesis , 2002, Science.

[25]  Daniel Pauly,et al.  Systematic distortions in world fisheries catch trends , 2001, Nature.

[26]  J. Mcglade,et al.  Climatic trends in continental shelf waters off Ghana and in the Gulf of Guinea, 1963-1992 , 2001 .

[27]  A. Cerami AFRICA , 2001 .

[28]  Micheli,et al.  Eutrophication, Fisheries, and Consumer-Resource Dynamics in Marine Pelagic Ecosystems. , 1999, Science.

[29]  P. Rodhouse,et al.  Cephalopod and Groundfish Landings: Evidence for Ecological Change in Global Fisheries? , 1998, Reviews in Fish Biology and Fisheries.

[30]  C. Roy An upwelling-induced retention area off Senegal: a mechanism to link upwelling and retention processes , 1998 .

[31]  M. Sinclair,et al.  Marine Populations, an Essay on Population Regulation and Speciation , 1989 .

[32]  Claude Roy,et al.  Optimal Environmental Window and Pelagic Fish Recruitment Success in Upwelling Areas , 1989 .

[33]  M. Sinclair Marine Populations: An Essay on Population Regulation and Speciation , 1988 .

[34]  M. Sinclair,et al.  Atlantic Herring: Stock Discreteness and Abundance , 1982, Science.

[35]  A. Bakun Guinea Current upwelling , 1978, Nature.

[36]  D. Cushing Marine ecology and fisheries , 1975, Environmental Biology of Fishes.

[37]  Jean-Paul Rebert,et al.  Étude hydrologique du plateau continental Ivoirien , 1972 .

[38]  A. Morlière Les saisons marines devant Abidjan , 1970 .

[39]  J. Hjort,et al.  Fluctuations in the Great Fisheries of Northern Europe: Viewed in the Light of Biological Research , 1914 .

[40]  M. Enayatmehr,et al.  Global Climate Change and Intensification of Coastal Ocean Upwelling , 2015 .

[41]  C. Field,et al.  Climate change 2014: impacts, adaptation, and vulnerability - Part B: regional aspects - Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[42]  George S. Triantafyllou,et al.  Indications of a climate effect on Mediterranean fisheries , 2013, Climatic Change.

[43]  C. N. Ukwe,et al.  A sixteen-country mobilization for sustainable fisheries in the Guinea Current Large Marine Ecosystem , 2006 .

[44]  Reuben.,et al.  The Role of a Stable Ocean in Larval Fish Survival and Subsequent Recruitment , 2004 .

[45]  R. Lasker FIELD CRITERIA FOR SURVIVAL OF ANCHOVY LARVAE: THE RELATION BETWEEN INSHORE CHLOROPHYLL MAXIMUM LAYERS AND SUCCESSFUL FIRST FEEDINGI , 2004 .

[46]  P. C. Reid,et al.  11 Monitoring levels of ‘phytoplankton colour’ in the gulf of guinea using ships of opportunity , 2002 .

[47]  C. PELAGIC FISH RECRUITMENT SUCCESS AND REPRODUCTIVE STRATEGY IN UPWELLING AREAS : ENVIRONMENTAL COMPROMISES , 2002 .

[48]  P. Cury,et al.  18 Environmental forcing and fisheries resources in Côte d'Ivoire and Ghana: Did something happen? , 2002 .

[49]  F. Ménard,et al.  9 Environmental variability at a coastal station near abidjan: Oceanic and continental influences , 2002 .

[50]  P. Cury,et al.  Pelagic fisheries and environmental constraints in upwelling areas : how much is possible ? , 1998 .

[51]  D. Binet,et al.  The Large Marine Ecosystem of Shelf Areas in the Gulf of Guinea: Long-Term Variability Induced by Climatic Changes , 1995 .

[52]  R. Arfi,et al.  Evolution spatio-temporelle d'un indice caractérisant l'intensité de la résurgence ivoiro-ghanéenne , 1993 .

[53]  É. Marchal,et al.  Les espèces pélagiques côtières de Côte d'Ivoire : ressources et exploitation , 1993 .

[54]  J. Sevrin-Reyssac Phytoplancton et production primaire dans les eaux marines ivoiriennes , 1993 .

[55]  M. Heath,et al.  Field Investigations of the Early Life Stages of Marine Fish , 1992 .

[56]  P. Cury,et al.  The Comparative Approach: Latitude-dependence and Effects of Wind Forcing on Reproductive Success , 1991 .

[57]  D. H. Cushing,et al.  Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis , 1990 .

[58]  P. Fréon Réponses et adaptations des stocks de clupeides d'Afrique de l'Ouest à la variabilité du milieu et de l'exploitation : analyse et réflexion à partir de l'exemple du Sénégal , 1988 .

[59]  P. Cury,et al.  Upwelling et pêche des espèces pélagiques côtières de Côte d'Ivoire: une approche globale , 1987 .

[60]  A. Bakun COMPARATIVE STUDIES AND THE RECRUITMENT PROBLEM: SEARCHING FOR GENERALIZATIONS , 1985 .

[61]  D. Binet Zooplancton des régions côtières à upwellings saisonniers du Golfe de Guinée , 1983 .

[62]  D. Binet Phytoplancton et production primaire des régions côtières à upwellings saisonniers dans le Golfe de Guinée , 1983 .

[63]  A. Bakun,et al.  TURBULENCE, TRANSPORT, AND PELAGIC FISH IN THE CALIFORNIA ANDPERUCURRENTSYSTEMS , 1982 .

[64]  D. Binet Influence des variations climatiques sur la pêcherie des Sardinella aurita ivoiro-ghanéennes : relation sécheresse-surpêche , 1982 .

[65]  D. Binet du plateau continental ivoirien. Essai de synthèse écologique , 1979 .

[66]  J. Zweifel,et al.  Growth and Survival of First-Feeding Northern Anchovy Larvae (Engraulis mordax) in Patches Containing Different Proportions of Large and Small Prey , 1978 .

[67]  H. Tournier,et al.  Reproduction de la sardine dans le golfe du Lion - Son importance pour l'avenir de la pêche , 1967 .

[68]  Vagn Walfrid Ekman,et al.  On the influence of the earth's rotation on ocean-currents. , 1905 .