Clustering by Ant Colony Optimization

We use the heuristic known as ant colony optimization in the partitioning problem for improving solutions of k-means method (McQueen (1967)). Each ant in the algorithm is associated with a partition, which is modified by the principles of the heuristic; that is, by the random selection of an element, and the assignment of another element which is chosen according to a probability that depends on the pheromone trail (related to the overall criterion: the maximization of the between-classes variance), and a local criterion (the distance between objects). The pheromone trail is reinforced for those objects that belong to the same class. We present some preliminary results, compared to results of other techniques, such as simulated annealing, genetic algorithms, tabu search, and k-means. Our results are as good as the best of the above methods.