Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition

We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier–Stokes equation with the Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L∞. This allows us to obtain the vanishing viscosity limit to the incompressible Euler system from a strong compactness argument.

[1]  Franck Sueur,et al.  Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions , 2011 .

[2]  Kevin Zumbrun,et al.  Large Viscous Boundary Layers For Noncharacteristic Nonlinear Hyperbolic Problems , 2005 .

[3]  F. Rousset Characteristic boundary layers in real vanishing viscosity limits , 2005 .

[4]  H. B. Veiga,et al.  Concerning the Wk,p-Inviscid Limit for 3-D Flows Under a Slip Boundary Condition , 2011 .

[5]  M. Gisclon,et al.  Etude des conditions aux limites pour des systèmes strictement hyperboliques, via l'approximation parabolique , 1994 .

[6]  L. Hörmander,et al.  Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .

[7]  Laure Saint-Raymond,et al.  Weak Compactness Methods for Singular Penalization Problems with Boundary Layers , 2009, SIAM J. Math. Anal..

[8]  Laure Saint-Raymond,et al.  From the Boltzmann equation to the Stokes‐Fourier system in a bounded domain , 2003 .

[9]  N. Masmoudi Remarks about the Inviscid Limit of the Navier–Stokes System , 2007 .

[10]  Nader Masmoudi,et al.  The Euler Limit of the Navier‐Stokes Equations, and Rotating Fluids with Boundary , 1998 .

[11]  Juhi Jang,et al.  Well‐posedness for compressible Euler equations with physical vacuum singularity , 2008, 0806.1782.

[12]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations , 1998 .

[13]  C. Bardos,et al.  Maximal positive boundary value problems as limits of singular perturbation problems , 1982 .

[14]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[15]  N. Masmoudi,et al.  Relevance of the Slip Condition for Fluid Flows Near an Irregular Boundary , 2010 .

[16]  Emmanuel Grenier,et al.  Boundary Layers for Viscous Perturbations of Noncharacteristic Quasilinear Hyperbolic Problems , 1998 .

[17]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[18]  R. Temam,et al.  Boundary Layers Associated with Incompressible Navier–Stokes Equations: The Noncharacteristic Boundary Case , 2002 .

[19]  C. Bardos,et al.  Existence et unicité de la solution de l'équation d'Euler en dimension deux , 1972 .

[20]  Z. Xin,et al.  On the vanishing viscosity limit for the 3D Navier‐Stokes equations with a slip boundary condition , 2007 .

[21]  H. B. Veiga Vorticity and regularity for flows under the Navier boundary condition , 2006 .

[22]  R. Temam On the Euler equations of incompressible perfect fluids , 1975 .

[23]  D. Iftimie,et al.  Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions , 2006 .

[24]  F. Rousset Stability of Large Ekman Boundary Layers in Rotating Fluids , 2004 .

[25]  E. Grenier,et al.  Ekman layers of rotating fluids, the case of well prepared initial data , 1997 .

[26]  F. Rousset,et al.  STABILITY OF OSCILLATING BOUNDARY LAYERS IN ROTATING FLUIDS , 2008 .

[27]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution , 1998 .

[28]  L. Berselli,et al.  On the Vanishing Viscosity Limit of 3D Navier-Stokes Equations under Slip Boundary Conditions in General Domains , 2012 .

[29]  D. Gérard-Varet,et al.  Wall laws for fluid flows at a boundary with random roughness , 2006, math/0606768.

[30]  N. Masmoudi Ekman layers of rotating fluids: The case of general initial data , 2000 .

[31]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[32]  H. Swann The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .

[33]  Frederic Rousset,et al.  Stability of one‐dimensional boundary layers by using Green's functions , 2001 .

[34]  Nader Masmoudi,et al.  Chapter 3 Examples of singular limits in hydrodynamics , 2007 .

[35]  Andro Mikelić,et al.  On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions , 1998 .

[36]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[37]  O. Gués Probleme Mixte Hyperbolique Quasi-Lineaire Caracteristique , 1990 .

[38]  James P. Kelliher Navier-Stokes Equations with Navier Boundary Conditions for a Bounded Domain in the Plane , 2006, SIAM J. Math. Anal..