Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets

Given a closed d-rectifiable set A embedded in Euclidean space, we investigate minimal weighted Riesz energy points on A; that is, N points constrained to A and interacting via the weighted power law potential V = w(x,y)|x-y| -s ,where s > 0 is a fixed parameter and w is an admissible weight. (In the unweighted case (w ≡ 1) such points for N fixed tend to the solution of the best-packing problem on A as the parameter s →∞.) Our main results concern the asymptotic behavior as N → ∞ of the minimal energies as well as the corresponding equilibrium configurations. Given a distribution ρ(x) with respect to d-dimensional Hausdorff measure on A, our results provide a method for generating N-point configurations on A that are "well-separated" and have asymptotic distribution p(x) as N → ∞.

[1]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[2]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[3]  Nikolay N. Andreev,et al.  An Extremal Property Of The Icosahedron , 1996 .

[4]  V. Yudin,et al.  The minimum of potential energy of a System of point charges , 1993 .

[5]  T. O’Neil Geometric Measure Theory , 2002 .

[6]  S. Smale Mathematical problems for the next century , 1998 .

[7]  V. Maymeskul,et al.  Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.

[8]  On Korkin-Zolotarev’s construction , 1994 .

[9]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[10]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[11]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[12]  David R. Nelson,et al.  Interacting topological defects on frozen topographies , 1999, cond-mat/9911379.

[13]  V. A. Yudin,et al.  Extremal dispositions of points on the sphere , 1997 .

[14]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[15]  E. Saff,et al.  Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds , 2003, math-ph/0311024.

[16]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[17]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[18]  D. Legg,et al.  Discrete Logarithmic Energy on the Sphere , 2002 .

[19]  Björn E. J. Dahlberg,et al.  On the distribution of Fekete points , 1978 .

[20]  William R. Smith,et al.  Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .