Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs

Conventional fossil fuel-based energy technologies can achieve efficiency in energy conversion but they are usually completely inefficient in carbon conversion because they generate significant CO2 emissions to the atmosphere per unit energy converted. In contrast, some renewable energy technologies characterized by negative carbon intensity can simultaneously achieve efficiency in the conversion of energy and in the conversion of carbon. These carbon negative renewable energy technologies can generate useful energy and remove CO2 from the atmosphere, either by direct capture and recycling of atmospheric CO2 or indirectly, by involving biofuels. Interestingly, the deployment of carbon negative renewable energy technologies can offset carbon emissions from conventional fossil fuel-based energy technologies and thus reduce the overall carbon intensity of energy systems.

[1]  Wojciech M. Budzianowski,et al.  Time delay of global warming , 2011 .

[2]  Wojciech M. Budzianowski,et al.  Allocation of ecologically allowable carbon emissions to countries as a key to more effective post-Kyoto Protocol climate change mitigation law , 2012 .

[3]  Deniz Uner,et al.  CO 2 utilisation by photocatalytic conversion to methane and methanol , 2011 .

[4]  Javier Bilbao,et al.  Kinetic modelling of dimethyl ether synthesis from (H2 + CO2) by considering catalyst deactivation , 2011 .

[5]  Ron Zevenhoven,et al.  CO2 mineral sequestration: developments toward large‐scale application , 2011 .

[6]  O. Francioso,et al.  Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes. , 2011, Bioresource technology.

[7]  M. Ballesteros,et al.  Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. , 2010, Bioresource technology.

[8]  Wojciech M. Budzianowski,et al.  Opportunities for bioenergy in Poland:biogas and solid biomass fuelled power plants , 2011 .

[9]  Anthony V. Cugini,et al.  CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction , 2010 .

[10]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[11]  D. Chadwick,et al.  Kinetics and modelling of dimethyl ether synthesis from synthesis gas , 1999 .

[12]  Wojciech M. Budzianowski,et al.  Sustainable biogas energy in Poland: Prospects and challenges , 2012 .

[13]  John A. Mathews,et al.  Carbon-negative biofuels , 2008 .

[14]  G. Oladosu Estimates of the global indirect energy-use emission impacts of USA biofuel policy , 2012 .

[15]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[16]  N. Nishio,et al.  Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. , 2010, Bioresource technology.

[17]  P. Edwards,et al.  Turning carbon dioxide into fuel , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  A. Onurbaş Avcioğlu,et al.  Status and potential of biogas energy from animal wastes in Turkey , 2012 .

[19]  Tasneem Abbasi,et al.  ‘Renewable’ hydrogen: Prospects and challenges , 2011 .

[20]  Wojciech M. Budzianowski,et al.  Mitigating NH3 Vaporization from an Aqueous Ammonia Process for CO2 Capture , 2011 .

[21]  Wang Wei,et al.  Methanation of carbon dioxide: an overview , 2011 .

[22]  David T. Wright,et al.  Nonphotosynthetic Bacteria and the Formation of Carbonates and Evaporites Through Time , 2005 .

[23]  Magdalena Frąc,et al.  Methane fermentation process for utilization of organic waste , 2012 .

[24]  Wojciech M. Budzianowski,et al.  An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane , 2010 .

[25]  Jinfu Wang,et al.  Dimethyl Ether Synthesis from CO 2 Hydrogenation on a CuO−ZnO−Al 2 O 3 −ZrO 2 /HZSM-5 Bifunctional Catalyst , 2008 .

[26]  Brent A. Gloy,et al.  Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. , 2010, Environmental science & technology.

[27]  Siglinda Perathoner,et al.  CO2‐based energy vectors for the storage of solar energy , 2011 .

[28]  Olivier Braissant,et al.  Biomineralization in plants as a long-term carbon sink , 2004, Naturwissenschaften.

[29]  Deniz Uner,et al.  On the mechanism of photocatalytic CO2 reduction with water in the gas phase , 2012 .

[30]  Wojciech M. Budzianowski,et al.  Negative Net CO2 Emissions from Oxy-Decarbonization of Biogas to H2 , 2010 .

[31]  Wojciech M. Budzianowski,et al.  Modelling of CO2 content in the atmosphere until 2300: influence of energy intensity of gross domestic product and carbon intensity of energy , 2013 .

[32]  Rattan Lal,et al.  Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain , 2011, Nutrient Cycling in Agroecosystems.

[33]  Dong Liu,et al.  Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor , 2011 .

[34]  P. M. Hwang,et al.  Mitochondrial respiration protects against oxygen-associated DNA damage. , 2010, Nature communications.

[35]  Xinping Zhou,et al.  Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China , 2009 .

[36]  Wojciech M. Budzianowski Target for national carbon intensity of energy by 2050: A case study of Poland's energy system , 2012 .

[37]  D. Tilman,et al.  Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass , 2006, Science.

[38]  Hajime Kobayashi,et al.  Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs. , 2010, Journal of bioscience and bioengineering.

[39]  Karina A. Ojeda,et al.  Sustainable ethanol production from lignocellulosic biomass Application of exergy analysis , 2011 .

[40]  Emilio Molina-Grima,et al.  A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source , 2013 .

[41]  J. Luciani,et al.  Technical and economical evaluation of enhanced biomass to liquid fuel processes , 2010 .

[42]  Wojciech M. Budzianowski,et al.  CO2 reactive absorption from flue gases into aqueous ammonia solutions: The NH3 slippage effect , 2011 .

[43]  Wojciech M. Budzianowski Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas? , 2011 .

[44]  Wojciech M. Budzianowski,et al.  Engineering benefits of mass recirculation in novel energy technologies with CO2 capture , 2010 .

[45]  James J. Leahy,et al.  Biochar from Biomass and Waste , 2010 .

[46]  P.J.A. Tijm,et al.  Kinetic understanding of the chemical synergy under LPDMETM conditions—once-through applications , 1999 .

[47]  Jerry D. Murphy,et al.  A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take , 2010 .

[48]  J. Amonette,et al.  Sustainable biochar to mitigate global climate change , 2010, Nature communications.

[49]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[50]  Mark E. Hodson,et al.  Soil pH governs production rate of calcium carbonate secreted by the earthworm Lumbricus terrestris , 2011 .

[51]  K. Lackner,et al.  Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy , 2011 .

[52]  Surya S. Durbha,et al.  Nutrient fertilizer requirements for sustainable biomass supply to meet U.S. bioenergy goal. , 2011 .

[53]  Monica Puccini,et al.  Cogasification of sewage sludge in an updraft gasifier , 2012 .

[54]  Ayhan Demirbas,et al.  Competitive liquid biofuels from biomass , 2011 .

[55]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[56]  Zhenpeng Hu,et al.  CO2 methanation on Ru-doped ceria , 2011 .

[57]  Amit Kumar,et al.  Biofuels and biochemicals production from forest biomass in Western Canada , 2011 .

[58]  Tsung Leo Jiang,et al.  An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction , 2008 .

[59]  Wojciech M. Budzianowski,et al.  Experimental and Numerical Study of Recuperative Heat Recirculation , 2012 .

[60]  Brian Elmegaard,et al.  Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass , 2010 .

[61]  Staffan Jacobsson,et al.  The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology , 2006 .

[62]  Kj Krzysztof Ptasinski,et al.  Exergy analysis of synthetic natural gas production method from biomass , 2010 .

[63]  D. Manning,et al.  Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide , 2009 .

[64]  Keith A. Smith,et al.  N 2 O release from agro-biofuel production negates global warming reduction by replacing fossil fuels , 2007 .

[65]  Wojciech M. Budzianowski CRITICAL EVALUATION OF LOW-CARBON ELECTRICITY PRODUCTION TECHNOLOGIES , 2011 .

[66]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[67]  Zheng Jiang,et al.  Energy Storage via Carbon-Neutral Fuels Made From CO $_{2}$, Water, and Renewable Energy , 2012, Proceedings of the IEEE.

[68]  Fernando G. Martins,et al.  Recent developments on carbon capture and storage: An overview , 2011 .

[69]  David L. McCollum,et al.  Deep greenhouse gas reduction scenarios for California – Strategic implications from the CA-TIMES energy-economic systems model , 2012 .

[70]  Wojciech M. Budzianowski,et al.  Benefits of biogas upgrading to biomethane by high‐pressure reactive solvent scrubbing , 2012 .

[71]  Chih-Sheng Lin,et al.  Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading , 2012 .

[72]  L. Gago-Duport,et al.  Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: pathways to the formation of crystalline phases. , 2008, Journal of structural biology.

[73]  Marc Londo,et al.  Productivity developments in European agriculture: Relations to and opportunities for biomass production , 2011 .

[74]  D. Jansen,et al.  Bio energy with CCS (BECCS): Large potential for BioSNG at low CO2 avoidance cost , 2011 .

[75]  Jerry D. Murphy,et al.  Determining the regional potential for a grass biomethane industry , 2011 .

[76]  Wojciech M. Budzianowski,et al.  Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors , 2012 .

[77]  L. Lynd,et al.  Beneficial Biofuels—The Food, Energy, and Environment Trilemma , 2009, Science.

[78]  P. Weiland Biogas production: current state and perspectives , 2009, Applied Microbiology and Biotechnology.

[79]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[80]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.