On first integrals of second-order ordinary differential equations
暂无分享,去创建一个
J. L. Romero | A. Choudhury | P. Guha | S. Meleshko | S. Moyo | C. Muriel
[1] J. L. Romero,et al. SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH FIRST INTEGRALS OF THE FORM C(t) + 1/(A(t, x)ẋ + B(t, x)) , 2011 .
[2] S. Moyo,et al. APPLICATION OF THE GENERALISED SUNDMAN TRANSFORMATION TO THE LINEARISATION OF TWO SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS , 2011 .
[3] J. L. Romero,et al. Nonlocal transformations and linearization of second-order ordinary differential equations , 2010 .
[4] S. Meleshko,et al. Linearization of third-order ordinary differential equations by generalized Sundman transformations: The case X ‴ +αX=0 , 2010 .
[5] A. Choudhury,et al. On generalized Sundman transformation method, first integrals, symmetries and solutions of equations of Painlevé–Gambier type , 2010 .
[6] J. L. Romero,et al. λ-SYMMETRIES on the Derivation of First Integrals of Ordinary Differential Equations , 2010 .
[7] Nail H. Ibragimov,et al. A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles , 2010 .
[8] J. L. Romero,et al. First integrals, integrating factors and λ-symmetries of second-order differential equations , 2009 .
[9] J. L. Romero,et al. SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS AND FIRST INTEGRALS OF THE FORM A(t, x)ẋ + B(t, x) , 2009 .
[10] J. L. Romero,et al. Integrating Factors and λ–Symmetries , 2008 .
[11] N. Ibragimov,et al. Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. II , 2007 .
[12] Raouf Dridi. On the geometry of the first and second Painlevé equations , 2007, 0711.2815.
[13] V. K. Chandrasekar,et al. A unification in the theory of linearization of second-order nonlinear ordinary differential equations , 2005, nlin/0510045.
[14] V. K. Chandrasekar,et al. On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[15] S. Meleshko. On linearization of third-order ordinary differential equations , 2006 .
[16] M. Euler,et al. Sundman Symmetries of Nonlinear Second-Order and Third-Order Ordinary Differential Equations , 2004 .
[17] N. Ibragimov. Invariants of a Remarkable Family of Nonlinear Equations , 2002 .
[18] Sylvain Neut,et al. La géométrie de l'équation y = f ( x , y , y ′, y ″) , 2002 .
[19] Thomas Wolf,et al. Linearisable Third-Order Ordinary Differential Equations and Generalised Sundman Transformations: The Case X′′′=0 , 2002, nlin/0203028.
[20] B. Doubrov. Contact trivialization of ordinary di erential equations , 2002 .
[21] V. N. Gusyatnikova,et al. Contact Transformations and Local Reducibility of ODE to the Form y‴=0 , 1999 .
[22] Guy Grebot,et al. The Characterization of Third Order Ordinary Differential Equations Admitting a Transitive Fiber-Preserving Point Symmetry Group , 1997 .
[23] L. G. S. Duarte,et al. Linearization under nonpoint transformations , 1994 .
[24] S. I. Svinolupov,et al. ON SOME EQUIVALENCE PROBLEMS FOR DIFFERENTIAL EQUATIONS , 1993 .
[25] E. Cartan,et al. Sur les variétés à connexion projective , 1924 .
[26] S. Lie. Classification und Integration von gewöhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten , 1888 .