On first integrals of second-order ordinary differential equations

[1]  J. L. Romero,et al.  SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH FIRST INTEGRALS OF THE FORM C(t) + 1/(A(t, x)ẋ + B(t, x)) , 2011 .

[2]  S. Moyo,et al.  APPLICATION OF THE GENERALISED SUNDMAN TRANSFORMATION TO THE LINEARISATION OF TWO SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS , 2011 .

[3]  J. L. Romero,et al.  Nonlocal transformations and linearization of second-order ordinary differential equations , 2010 .

[4]  S. Meleshko,et al.  Linearization of third-order ordinary differential equations by generalized Sundman transformations: The case X ‴ +αX=0 , 2010 .

[5]  A. Choudhury,et al.  On generalized Sundman transformation method, first integrals, symmetries and solutions of equations of Painlevé–Gambier type , 2010 .

[6]  J. L. Romero,et al.  λ-SYMMETRIES on the Derivation of First Integrals of Ordinary Differential Equations , 2010 .

[7]  Nail H. Ibragimov,et al.  A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles , 2010 .

[8]  J. L. Romero,et al.  First integrals, integrating factors and λ-symmetries of second-order differential equations , 2009 .

[9]  J. L. Romero,et al.  SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS AND FIRST INTEGRALS OF THE FORM A(t, x)ẋ + B(t, x) , 2009 .

[10]  J. L. Romero,et al.  Integrating Factors and λ–Symmetries , 2008 .

[11]  N. Ibragimov,et al.  Invariants and invariant description of second-order ODEs with three infinitesimal symmetries. II , 2007 .

[12]  Raouf Dridi On the geometry of the first and second Painlevé equations , 2007, 0711.2815.

[13]  V. K. Chandrasekar,et al.  A unification in the theory of linearization of second-order nonlinear ordinary differential equations , 2005, nlin/0510045.

[14]  V. K. Chandrasekar,et al.  On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  S. Meleshko On linearization of third-order ordinary differential equations , 2006 .

[16]  M. Euler,et al.  Sundman Symmetries of Nonlinear Second-Order and Third-Order Ordinary Differential Equations , 2004 .

[17]  N. Ibragimov Invariants of a Remarkable Family of Nonlinear Equations , 2002 .

[18]  Sylvain Neut,et al.  La géométrie de l'équation y = f ( x , y , y ′, y ″) , 2002 .

[19]  Thomas Wolf,et al.  Linearisable Third-Order Ordinary Differential Equations and Generalised Sundman Transformations: The Case X′′′=0 , 2002, nlin/0203028.

[20]  B. Doubrov Contact trivialization of ordinary di erential equations , 2002 .

[21]  V. N. Gusyatnikova,et al.  Contact Transformations and Local Reducibility of ODE to the Form y‴=0 , 1999 .

[22]  Guy Grebot,et al.  The Characterization of Third Order Ordinary Differential Equations Admitting a Transitive Fiber-Preserving Point Symmetry Group , 1997 .

[23]  L. G. S. Duarte,et al.  Linearization under nonpoint transformations , 1994 .

[24]  S. I. Svinolupov,et al.  ON SOME EQUIVALENCE PROBLEMS FOR DIFFERENTIAL EQUATIONS , 1993 .

[25]  E. Cartan,et al.  Sur les variétés à connexion projective , 1924 .

[26]  S. Lie Classification und Integration von gewöhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten , 1888 .