Wideband Absorbers in the Visible with Ultrathin Plasmonic-Phase Change Material Nanogratings

The narrowband surface plasmon resonance of metallic nanostructures was once thought to limit the bandwidth of absorptance, yet recent demonstrations show that it can be harnessed using mechanisms such as multiple resonances, impedance matching, and slow-light modes to create broadband absorptance. However, in the visible spectrum, realization of absorbers based on patterned plasmonic nanostructures is challenging due to strict fabrication tolerances. Here we experimentally compare two different candidates for visible light broadband high absorptance. The first candidate is planar thin film dual layers of Ge2Sb2Te5 and aluminum (Al), while the second structure employs ultrathin Al grating/Ge2Sb2Te5 dual layers. In both cases, the absorbers yield a measured absorptance greater than 78% in the visible. A remarkably high-absorptance bandwidth of 120 nm was measured and associated with the large imaginary part of Ge2Sb2Te5 dielectric function. We find that the simple dual-layer planar structure is an effectiv...

[1]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.

[2]  Koray Aydin,et al.  Large-area, Lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films , 2014 .

[3]  A. Kabashin,et al.  Light-Tunable Plasmonic Nanoarchitectures Using Gold Nanoparticle–Azobenzene-Containing Cationic Surfactant Complexes , 2015 .

[4]  J. Hupp,et al.  Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[5]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[6]  G. Trápaga,et al.  Dielectric properties of Ge2Sb2Te5 phase-change films , 2013 .

[7]  Christopher E. Petoukhoff,et al.  Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review , 2015 .

[8]  M. Wuttig,et al.  (GeTe)x–(Sb2Te3)1–x phase‐change thin films as potential thermoelectric materials , 2013 .

[9]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[10]  J. Toudert,et al.  Rare Earth-Ion/Nanosilicon Ultrathin Layer: A versatile nanohybrid light-emitting building block for active optical metamaterials , 2015 .

[11]  Huanjun Chen,et al.  Fabrication of Si/Au Core/Shell Nanoplasmonic Structures with Ultrasensitive Surface-Enhanced Raman Scattering for Monolayer Molecule Detection , 2015 .

[12]  Qidai Chen,et al.  Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode , 2012 .

[13]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[14]  D. O’Carroll,et al.  Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system. , 2015, Nanoscale.

[15]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[16]  V. Shalaev Optical negative-index metamaterials , 2007 .

[17]  Z. Geng,et al.  Polarization-Sensitive Coupling and Transmission Dip Shift in Asymmetric Metamaterials , 2015 .

[18]  C. F. Desai,et al.  Sb 2 Te 3 and In 0.2 Sb 1.8 Te 3 : A comparative study of thermoelectric and related properties , 2002 .

[19]  Jing Feng,et al.  Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles , 2014 .

[20]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[21]  D. O’Carroll,et al.  Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces , 2015, Nature Communications.

[22]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[23]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[24]  Hong-Bo Sun,et al.  Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films , 2011 .

[25]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[26]  N. Zhang,et al.  Nanocavity Enhancement for Ultra‐Thin Film Optical Absorber , 2014, Advances in Materials.

[27]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[28]  Wang Jianfeng,et al.  Strong-Field-Enhanced Spectroscopy in Silicon Nanoparticle Electric and Magnetic Dipole Resonance near a Metal Surface , 2015 .

[29]  D. O’Carroll,et al.  Gold Nanowire and Nanorod Plasmonic Mechanisms for Increasing Ultra-Thin Organic Photovoltaic Active Layer Absorption , 2014, Plasmonics.

[30]  T. Wágner,et al.  Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry , 2008 .

[31]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[32]  Yang Yang Li,et al.  Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime. , 2013, Optics express.

[33]  Qidai Chen,et al.  Surface plasmon enhanced absorption dynamics of regioregular poly(3-hexylthiophene) , 2011 .

[34]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[35]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[36]  Yi Zhang,et al.  Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. , 2012, Nano letters.

[37]  Lei Zhang,et al.  Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies , 2014, Scientific Reports.

[38]  S. Dong,et al.  Microstructures and thermoelectric properties of GeSbTe based layered compounds , 2007 .

[39]  H. Atwater,et al.  A single-layer wide-angle negative-index metamaterial at visible frequencies. , 2010, Nature materials.