Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy

The use of Pseudoinvariant Areas (PIA) makes it possible to carry out a reasonably robust and automatic radiometric correction for long time series of remote sensing imagery, as shown in previous studies for large data sets of Landsat MSS, TM, and ETM+ imagery. In addition, they can be employed to obtain more coherence among remote sensing data from different sensors. The present work validates the use of PIA for the radiometric correction of pairs of images acquired almost simultaneously (Landsat-7 (ETM+) or Landsat-8 (OLI) and Sentinel-2A (MSI)). Four pairs of images from a region in SW Spain, corresponding to four different dates, together with field spectroradiometry measurements collected at the time of satellite overpass were used to evaluate a PIA-based radiometric correction. The results show a high coherence between sensors (r2 = 0.964) and excellent correlations to in-situ data for the MiraMon implementation (r2 > 0.9). Other methodological alternatives, ATCOR3 (ETM+, OLI, MSI), SAC-QGIS (ETM+, OLI, MSI), 6S-LEDAPS (ETM+), 6S-LaSRC (OLI), and Sen2Cor-SNAP (MSI), were also evaluated. Almost all of them, except for SAC-QGIS, provided similar results to the proposed PIA-based approach. Moreover, as the PIA-based approach can be applied to almost any image (even to images lacking of extra atmospheric information), it can also be used to solve the robust integration of data from new platforms, such as Landsat-8 or Sentinel-2, to enrich global data acquired since 1972 in the Landsat program. It thus contributes to the program’s continuity, a goal of great interest for the environmental, scientific, and technical community.

[1]  Alexander Berk,et al.  MODTRAN6: a major upgrade of the MODTRAN radiative transfer code , 2014, Defense + Security Symposium.

[2]  Mark R. Miller,et al.  Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols , 2003 .

[3]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. , 2007, Applied optics.

[4]  Zhaoming Zhang,et al.  A practical DOS model-based atmospheric correction algorithm , 2010 .

[5]  Chengquan Huang,et al.  Quality assessment of Landsat surface reflectance products using MODIS data , 2012, Comput. Geosci..

[6]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[7]  Lawrence Ong,et al.  Landsat-8 Operational Land Imager Radiometric Calibration and Stability , 2014, Remote. Sens..

[8]  W. A. Malila,et al.  Importance of atmospheric scattering in remote sensing, or everything you've always wanted to know about atmospheric scattering but were afraid to ask. , 1971 .

[9]  Antonio Ruiz-Verdú,et al.  Mapping of Photosynthetic Pigments in Spanish Reservoirs , 2004 .

[10]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[11]  Kenton Lee,et al.  The Spectral Response of the Landsat-8 Operational Land Imager , 2014, Remote. Sens..

[12]  C. Emde,et al.  ARTS, the atmospheric radiative transfer simulator, version 2 , 2011 .

[13]  Larry Leigh,et al.  The Ground-Based Absolute Radiometric Calibration of Landsat 8 OLI , 2015, Remote. Sens..

[14]  Alexander A. Kokhanovsky,et al.  Light Scattering Media Optics: Problems and Solutions , 2010 .

[15]  A. Kokhanovsky,et al.  Satellite Aerosol Remote Sensing Over Land , 2009 .

[16]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[17]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[18]  A. Kokhanovsky,et al.  Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments , 2007, Atmospheric Research.

[19]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[20]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[21]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[22]  Michele Meroni,et al.  3S: A novel program for field spectroscopy , 2009, Comput. Geosci..

[23]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[24]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[25]  Enrico Cadau,et al.  Sentinel-2 L2A Processor Sen2Cor , 2016 .

[26]  E. Milton,et al.  The use of the empirical line method to calibrate remotely sensed data to reflectance , 1999 .

[27]  E. Miguel,et al.  A REVIEW OF INTA AHS PAF , 2014 .

[28]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[29]  S. Goetz,et al.  Radiometric rectification - Toward a common radiometric response among multidate, multisensor images , 1991 .

[30]  Ferran Gascon,et al.  Atmospheric Correction Inter-comparison Exercise (ACIX) , 2017 .

[31]  Jin Chen,et al.  A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images , 2012 .

[32]  S. R. Hale,et al.  Impact of topographic normalization on land-cover classification accuracy , 2003 .

[33]  Diofantos G. Hadjimitsis,et al.  The use of selected pseudo-invariant targets for the application of atmospheric correction in multi-temporal studies using satellite remotely sensed imagery , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[34]  Feng Gao,et al.  A simple and effective method for filling gaps in Landsat ETM+ SLC-off images , 2011 .

[35]  Xavier Pons,et al.  A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data , 1994 .

[36]  Jérôme M. B. Louis,et al.  Copernicus Sentinel-2A Calibration and Products Validation Status , 2017, Remote. Sens..

[37]  Tobias Bachmeier,et al.  Polarization Optics Of Random Media , 2016 .

[38]  A. Kokhanovsky,et al.  SCIATRAN 2.0 – A new radiative transfer model for geophysical applications in the 175–2400 nm spectral region , 2004 .

[39]  Feng Gao,et al.  LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2 , 2013 .

[40]  M. S. Moran,et al.  Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output , 1992 .

[41]  Jingfeng Huang,et al.  Empirical Line Method Using Spectrally Stable Targets to Calibrate IKONOS Imagery , 2008 .

[42]  Javier Marcello,et al.  Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery , 2016, Sensors.

[43]  Xavier Pons,et al.  Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[44]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .

[45]  Miquel Ninyerola,et al.  Developing spatially and thematically detailed backdated maps for land cover studies , 2017, Int. J. Digit. Earth.

[46]  Nigel P. Fox,et al.  Progress in Field Spectroscopy , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[47]  Vicente Caselles Espectroradiometría de campo del visible al infrarrojo térmico de muestras con características espectrales singulares , 2015 .

[48]  Xavier Pons,et al.  A Geostatistical Approach for Selecting the Highest Quality MODIS Daily Images , 2013, IbPRIA.

[49]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[50]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[51]  Clement Atzberger,et al.  Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples , 2016, Remote. Sens..

[52]  Ricardo Díaz-Delgado,et al.  Towards a Standard Plant Species Spectral Library Protocol for Vegetation Mapping: A Case Study in the Shrubland of Doñana National Park , 2015, ISPRS Int. J. Geo Inf..

[53]  M. Jiméneza,et al.  AIRBORNE HYPERSPECTRAL SCANNER (AHS) MAPPING CAPACITY SIMULATION FOR THE DOÑANA BIOLOGICAL RESERVE SCRUBLANDS , 2007 .

[54]  J. Townshend,et al.  Global surface reflectance products from Landsat: Assessment using coincident MODIS observations , 2013 .

[55]  Duccio Rocchini,et al.  ssessing floristic composition with multispectral sensors — A comparison based n monotemporal and multiseasonal field spectra , 2012 .

[56]  Nicholas C. Coops,et al.  Effect of topographic correction on forest change detection using spectral trend analysis of Landsat pixel-based composites , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[57]  Samantha J. Lavender,et al.  European Space agency (ESA) Landsat MSS/TM/ETM+/OLI archive: 42 years of our history , 2017, 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp).

[58]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .