Robin spectrum: two disks maximize the third eigenvalue

The third eigenvalue of the Robin Laplacian on a simply-connected planar domain of given area is bounded above by the third eigenvalue of a disjoint union of two disks, provided the Robin parameter lies in a certain range and is scaled in each case by the length of the boundary. Equality is achieved when the domain degenerates suitably to the two disks.

[1]  S. Nayatani,et al.  Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian , 2017, Comptes Rendus Mathematique.

[2]  Robert Weinstock,et al.  Inequalities for a Classical Eigenvalue Problem , 1954 .

[3]  D. Bucur,et al.  Maximization of the second non-trivial Neumann eigenvalue , 2018, Acta Mathematica.

[4]  Extremal Metric for the First Eigenvalue on a Klein Bottle , 2003, Canadian Journal of Mathematics.

[5]  Hans F. Weinberger,et al.  An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .

[6]  N. Nadirashvili,et al.  Isoperimetric inequality for the third eigenvalue of the Laplace–Beltrami operator on $\mathbb{S}^2$ , 2015, 1506.07017.

[7]  A. E. Soufi,et al.  Le volume conforme et ses applications d'après Li et Yau , 1984 .

[8]  Menahem Schiffer,et al.  Some inequalities for Stekloff eigenvalues , 1974 .

[9]  A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle , 2006, math/0701773.

[10]  Pedro J. Freitas,et al.  4 The Robin problem , 2017 .

[11]  R. Laugesen The Robin Laplacian—Spectral conjectures, rectangular theorems , 2019, Journal of Mathematical Physics.

[12]  D. Cianci,et al.  On branched minimal immersions of surfaces by first eigenfunctions , 2017, Annals of Global Analysis and Geometry.

[13]  Bounds and extremal domains for Robin eigenvalues with negative boundary parameter , 2016, 1605.08161.

[14]  N. Nadirashvili,et al.  How large can the first eigenvalue be on a surface of genus two , 2005, math/0509398.

[15]  Iosif Polterovich,et al.  Maximization of the second positive Neumann eigenvalue for planar domains , 2008, 0801.2142.

[16]  G. Szegő,et al.  Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .

[17]  N. Nadirashvili,et al.  An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane , 2016, Geometric and Functional Analysis.

[18]  Shing-Tung Yau,et al.  A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .

[19]  Philippe Blanchard,et al.  Variational Methods in Mathematical Physics , 1992 .

[20]  From Neumann to Steklov and beyond, via Robin: The Weinberger way , 2018, 1810.07461.

[21]  Shing-Tung Yau,et al.  Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds , 1980 .

[22]  Pedro Freitas,et al.  Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians , 2012, J. Optim. Theory Appl..

[23]  M. Karpukhin Index of minimal spheres and isoperimetric eigenvalue inequalities , 2019, 1905.03174.

[24]  Nikolai Nadirashvili,et al.  The Erwin Schrr Odinger International Institute for Mathematical Physics Berger's Isoperimetric Problem and Minimal Immersions of Surfaces Berger's Isoperimetric Problem and Minimal Immersions of Surfaces , 2022 .

[25]  N. Nadirashvili,et al.  An isoperimetric inequality for Laplace eigenvalues on the sphere , 2017, Journal of Differential Geometry.

[26]  N. Nadirashvili Isoperimetric Inequality for the Second Eigenvalue of a Sphere , 2002 .

[27]  M. Karpukhin On the Yang–Yau inequality for the first Laplace eigenvalue , 2019, Geometric and Functional Analysis.

[28]  L. Evans Measure theory and fine properties of functions , 1992 .