Robin spectrum: two disks maximize the third eigenvalue
暂无分享,去创建一个
[1] S. Nayatani,et al. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian , 2017, Comptes Rendus Mathematique.
[2] Robert Weinstock,et al. Inequalities for a Classical Eigenvalue Problem , 1954 .
[3] D. Bucur,et al. Maximization of the second non-trivial Neumann eigenvalue , 2018, Acta Mathematica.
[4] Extremal Metric for the First Eigenvalue on a Klein Bottle , 2003, Canadian Journal of Mathematics.
[5] Hans F. Weinberger,et al. An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .
[6] N. Nadirashvili,et al. Isoperimetric inequality for the third eigenvalue of the Laplace–Beltrami operator on $\mathbb{S}^2$ , 2015, 1506.07017.
[7] A. E. Soufi,et al. Le volume conforme et ses applications d'après Li et Yau , 1984 .
[8] Menahem Schiffer,et al. Some inequalities for Stekloff eigenvalues , 1974 .
[9] A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle , 2006, math/0701773.
[10] Pedro J. Freitas,et al. 4 The Robin problem , 2017 .
[11] R. Laugesen. The Robin Laplacian—Spectral conjectures, rectangular theorems , 2019, Journal of Mathematical Physics.
[12] D. Cianci,et al. On branched minimal immersions of surfaces by first eigenfunctions , 2017, Annals of Global Analysis and Geometry.
[13] Bounds and extremal domains for Robin eigenvalues with negative boundary parameter , 2016, 1605.08161.
[14] N. Nadirashvili,et al. How large can the first eigenvalue be on a surface of genus two , 2005, math/0509398.
[15] Iosif Polterovich,et al. Maximization of the second positive Neumann eigenvalue for planar domains , 2008, 0801.2142.
[16] G. Szegő,et al. Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .
[17] N. Nadirashvili,et al. An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane , 2016, Geometric and Functional Analysis.
[18] Shing-Tung Yau,et al. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .
[19] Philippe Blanchard,et al. Variational Methods in Mathematical Physics , 1992 .
[20] From Neumann to Steklov and beyond, via Robin: The Weinberger way , 2018, 1810.07461.
[21] Shing-Tung Yau,et al. Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds , 1980 .
[22] Pedro Freitas,et al. Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians , 2012, J. Optim. Theory Appl..
[23] M. Karpukhin. Index of minimal spheres and isoperimetric eigenvalue inequalities , 2019, 1905.03174.
[24] Nikolai Nadirashvili,et al. The Erwin Schrr Odinger International Institute for Mathematical Physics Berger's Isoperimetric Problem and Minimal Immersions of Surfaces Berger's Isoperimetric Problem and Minimal Immersions of Surfaces , 2022 .
[25] N. Nadirashvili,et al. An isoperimetric inequality for Laplace eigenvalues on the sphere , 2017, Journal of Differential Geometry.
[26] N. Nadirashvili. Isoperimetric Inequality for the Second Eigenvalue of a Sphere , 2002 .
[27] M. Karpukhin. On the Yang–Yau inequality for the first Laplace eigenvalue , 2019, Geometric and Functional Analysis.
[28] L. Evans. Measure theory and fine properties of functions , 1992 .