Molecular Dynamics Simulation of Primary Damage in β-Li2TiO3

Abstract Displacement cascades were conducted on β-Li2TiO3 to determine threshold displacement energies and understand primary damage. Two different PKA energies and three different crystallographic directions were used for the study. Ti seemed to have the lowest threshold displacement energy. The evolution of the damage showed an oscillating behavior suggesting that subcascades form even for the low PKA energies considered in this work. This observation suggested that, either high angle scattering or short range channeling occurs during radiation damage. The primary damage was found to consist mainly of Li Frenkel pairs, OLi and LiO antisites. Almost all the defects showed a strong, identical dependence on the PKA direction, independent of the PKA energy. In particular, PKA directions of [100] produced maximum defects, while [001] the lowest. LiTi and TiLi showed directional dependence only for high energy cascades. The primary damage state had significant fractions of Lii close to O atoms, and Oi close to Li atoms. This observation suggests that Li atoms are trapped by O atoms due to Coulombic interactions. Such a trapping behavior may also be observed for positively charged T, thus reducing T yield. For the PKA energies and the time scales examined in this work, no clusters were found to occur.

[1]  B. Rasneur,et al.  Irradiation behavior of LiAlO2 and Li2ZrO3 ceramics in the ALICE 3 experiment , 1992 .

[2]  R. Stoller Point defect survival and clustering fractions obtained from molecular dynamics simulations of high energy cascades , 1996 .

[3]  H. Zimmermann,et al.  Investigation of the mechanical properties of ceramic breeder materials , 1988 .

[4]  Satoru Tanaka,et al.  Irradiation effects in ceramic breeder materials , 1998 .

[5]  D. Yamaki,et al.  Disordering in Li2TiO3 irradiated with high energy ions , 2003 .

[6]  Masanori Matsui,et al.  Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2 , 1991 .

[7]  Y. Oya,et al.  Tritium trapping states induced by lithium-depletion in Li 2 TiO 3 , 2017 .

[8]  N. Marks,et al.  Systematic calculation of threshold displacement energies: Case study in rutile , 2012 .

[9]  Noam Bernstein,et al.  Thermal effects in 10 keV Si PKA cascades in 3C-SiC , 2009 .

[10]  Yuanjie Li,et al.  Study on the mechanical behaviors and elastic modulus of mixed fusion pebble beds , 2017 .

[11]  Cheng Gu,et al.  Preparation of Li2TiO3–Li4SiO4 core–shell ceramic pebbles with enhanced crush load by graphite bed process , 2015 .

[12]  Dorian A. H. Hanaor,et al.  Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds , 2017 .

[13]  Marc Kamlah,et al.  Effective thermal conductivity of advanced ceramic breeder pebble beds , 2017 .

[14]  T. Oda,et al.  Displacement cascade simulation of LiAlO2 using molecular dynamics , 2011 .

[15]  Robin W. Grimes,et al.  Opportunities for Advanced Ceramics and Composites in the Nuclear Sector , 2013 .

[16]  Gary S. Was,et al.  Fundamentals of Radiation Materials Science: Metals and Alloys , 2007 .

[17]  Yingchun Zhang,et al.  Preparation of Li4SiO4-xLi2O powders and pebbles for advanced tritium breeders , 2017 .

[18]  James F. Ziegler,et al.  Refined universal potentials in atomic collisions , 1982 .

[19]  L. Shanshan,et al.  Measurements of the effective thermal conductivity of a non-compressed Li4SiO4 pebble bed , 2017 .

[20]  D. Morgan,et al.  Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC , 2010 .

[21]  G. Sordon,et al.  Heat Transfer in Pebble Beds for Fusion Blankets , 1990 .

[22]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[23]  N. Hine,et al.  Point Defects and Non-stoichiometry in Li2TiO3 , 2014 .

[24]  Marc Kamlah,et al.  Mechanics of binary and polydisperse spherical pebble assembly , 2012 .

[25]  Ian Cook,et al.  Materials research for fusion energy , 2006, Nature materials.

[26]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[27]  Tadeusz W Patzek,et al.  Extension of Hoshen–Kopelman algorithm to non-lattice environments , 2003 .

[28]  Y. Oya,et al.  Dependency of irradiation damage density on tritium migration behaviors in Li2TiO3 , 2014 .

[29]  V. Zhukov,et al.  Electronic Structure and Chemical Bonding in Monoclinic and Cubic Li2-xHxTiO3 (0≤ x ≤ 2) , 2003 .

[30]  N. A. Deskins,et al.  A Shell Model for Atomistic Simulation of Charge Transfer in Titania , 2008 .

[31]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[32]  H. Moriyama,et al.  Correlation between annihilation of radiation defects and tritium release in Li2TiO3 , 2004 .

[33]  S. Murphy Tritium Solubility in Li2TiO3 from First-Principles Simulations , 2014 .

[34]  C. Johnson,et al.  Ceramic breeder materials: Status and needs , 1998 .

[35]  Y. Idemoto,et al.  Crystal growth and structure refinement of monoclinic Li2TiO3 , 2009 .

[36]  Nigel A. Marks,et al.  Structural dependence of threshold displacement energies in rutile, anatase and brookite TiO2 , 2014 .

[37]  J. Laan,et al.  Tritium release kinetics from Li2TiO3 pebbles as prepared by soft-wet-chemistry , 2004 .

[38]  G. Kizane,et al.  Formation and properties of radiation-induced defects and radiolysis products in lithium orthosilicate , 1991 .

[39]  Y. Oya,et al.  Developing a tritium release model for Li2TiO3 with irradiation-induced defects , 2015 .

[40]  W. Setyawan,et al.  Insights on Amorphization of Lithium Aluminate from Atomistic Simulation , 2017 .

[41]  Satoru Tanaka,et al.  Molecular-dynamics simulation of threshold displacement energies in lithium aluminate , 2011 .

[42]  S. Kerisit,et al.  Combined 6,7Li NMR and Molecular Dynamics Study of Li Diffusion in Li2TiO3 , 2009 .

[43]  D. Mandal,et al.  Experimental investigation of effective thermal conductivity of packed lithium-titanate pebble bed with external heat source and flow of helium , 2017 .

[44]  Yang Liu,et al.  Discrete element modeling of pebble bed packing structures for HCCB TBM , 2017 .

[45]  T. Oda,et al.  Effects of threshold displacement energy on defect production by displacement cascades in α, β and γ-LiAlO2 , 2013 .

[46]  L. V. Brutzel,et al.  Atomistic Simulation of the Structural, Thermodynamic, and Elastic Properties of Li2TiO3 , 2011 .

[47]  C. Johnson,et al.  Ceramic breeder materials , 1988 .

[48]  Y. Gan,et al.  A Discrete Element Method to simulate the mechanical behavior of ellipsoidal particles for a fusion breeding blanket , 2017 .

[49]  C. Johnson,et al.  Summary of experimental results for ceramic breeder materials , 1995 .

[50]  William J. Weber,et al.  Displacement threshold energies in β-SiC , 1998 .