Algebraic theory of probabilistic processes

Abstract In this paper we extend de Nicola and Hennessy’s testing theory to deal with probabilities. We say that two processes are testing equivalent if the probabilities with which they pass any test are equal. We present three alternative semantic views of our testing equivalence. First, we introduce adequate extensions of acceptance sets (inducing an operational characterization) and acceptance trees (inducing a denotational semantics). We also present a sound and complete axiomatization of our testing equivalence. So, this paper represents a complete study of the adaptation of the classical testing theory for probabilistic processes.

[1]  Scott A. Smolka,et al.  Composition and Behaviors of Probabilistic I/O Automata , 1994, Theor. Comput. Sci..

[2]  Scott A. Smolka,et al.  A complete axiom system for finite-state probabilistic processes , 2000, Proof, Language, and Interaction.

[3]  G. Plotkin,et al.  Proof, language, and interaction: essays in honour of Robin Milner , 2000 .

[4]  Rocco De Nicola,et al.  CCS without tau's , 1987, TAPSOFT, Vol.1.

[5]  Valentín Valero Ruiz,et al.  A process algebra for probabilistic and nondeterministic processes , 2001, Inf. Process. Lett..

[6]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[7]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[8]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[9]  Ivan Christoff,et al.  Testing Equivalences and Fully Abstract Models for Probabilistic Processes , 1990, CONCUR.

[10]  Jos C. M. Baeten,et al.  Abstraction in Probabilistic Process Algebra , 2001, TACAS.

[11]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[12]  Joost-Pieter Katoen,et al.  On Generative Parallel Composition , 1998, PROBMIV.

[13]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[14]  David de Frutos-Escrig,et al.  A Sound and Complete Proof System for Probabilistic Processes , 1997, ARTS.

[15]  Manuel Núñez,et al.  A Testing Theory for Generally Distributed Stochastic Processes , 2001, CONCUR.

[16]  Marta Z. Kwiatkowska,et al.  A Testing Equivalence for Reactive Probabilistic Processes , 1998, EXPRESS.

[17]  Manuel Núñez,et al.  Fair Testing through Probabilistic Testing , 1999, FORTE.

[18]  Wang Yi,et al.  Probabilistic Extensions of Process Algebras , 2001, Handbook of Process Algebra.

[19]  Matthew Hennessy,et al.  Acceptance trees , 1985, JACM.

[20]  Wang Yi,et al.  Compositional testing preorders for probabilistic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[21]  Rance Cleaveland,et al.  Infinite Probabilistic and Nonprobabilistic Testing , 1998, FSTTCS.

[22]  Jan A. Bergstra,et al.  Axiomatizing Probabilistic Processes: ACP with Generative Probabilities , 1995, Inf. Comput..

[23]  Rance Cleaveland,et al.  Testing Preorders for Probabilistic Processes , 1992, Inf. Comput..

[24]  Rance Cleaveland,et al.  Priority in Process Algebra , 2001, Handbook of Process Algebra.

[25]  Manuel Núñez,et al.  Acceptance Trees for Probabilistic Processes , 1995, CONCUR.

[26]  Roberto Segala,et al.  Testing Probabilistic Automata , 1996, CONCUR.

[27]  Mario Bravetti,et al.  Expressing Processes with Different Action Durations through Probabilities , 2001, PAPM-PROBMIV.

[28]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[29]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[30]  Wang Yi,et al.  Testing Probabilistic and Nondeterministic Processes , 1992, PSTV.

[31]  Manuel Núñez,et al.  An Axiomatization of Probabilistic Testing , 1999, ARTS.

[32]  Gavin Lowe,et al.  Probabilistic and Prioritized Models of Timed CSP , 1995, Theor. Comput. Sci..

[33]  Scott A. Smolka,et al.  Equivalences, Congruences, and Complete Axiomatizations for Probabilistic Processes , 1990, CONCUR.

[34]  Manuel Núñez,et al.  Denotational Semantics for Probabilistic Refusal Testing , 1998, PROBMIV.

[35]  Suzana Andova,et al.  Process Algebra with Probabilistic Choice , 1999, ARTS.