Numerical calculation of the full two-loop electroweak corrections to muon ( g−2 )

Numerical calculation of two-loop electroweak corrections to the muon anomalous magnetic moment ($g$-2) is done based on, on shell renormalization scheme (OS) and free quark model (FQM). The GRACE-FORM system is used to generate Feynman diagrams and corresponding amplitudes. Total 1780 two-loop diagrams and 70 one-loop diagrams composed of counter terms are calculated to get the renormalized quantity. As for the numerical calculation, we adopt trapezoidal rule with Double Exponential method (DE). Linear extrapolation method (LE) is introduced to regularize UV- and IR-divergences and to get finite values. The reliability of our result is guaranteed by several conditions. The sum of one and two loop electroweak corrections in this renormalization scheme becomes $a_\mu^{EW:OS}[1{\rm+}2{\rm -loop}]= 151.2 (\pm 1.0)\times 10^{-11}$, where the error is due to the numerical integration and the uncertainty of input mass parameters and of the hadronic corrections to electroweak loops. By taking the hadronic corrections into account, we get $a_\mu^{EW}[1{\rm+}2 {\rm -loop}]= 152.9 (\pm 1.0)\times 10^{-11}$. It is in agreement with the previous works given in PDG within errors.

[1]  Z. Silagadze,et al.  The dominant two-loop electroweak contributions to the anomalous magnetic moment of the muon , 1992 .

[2]  Tokyo,et al.  Automatic calculation of two-loop ELWK corrections to the muon (g-2) , 2017, 1709.03284.

[3]  Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. , 2002, Physical review letters.

[4]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[5]  R. Adams Proceedings , 1947 .

[6]  Avram Sidi Practical Extrapolation Methods: Sequence Transformations , 2003 .

[7]  I. Bars,et al.  Muon Magnetic Moment in a Finite Theory of Weak and Electromagnetic Interactions , 1972 .

[8]  Fukuko Yuasa,et al.  Regularization of IR divergent loop integrals , 2012 .

[9]  Toshiaki Kaneko A Feynman-graph generator for any order of coupling constants , 1994 .

[10]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[11]  F. Boudjema,et al.  Double Higgs production at the linear colliders and the probing of the Higgs self-coupling , 1995, hep-ph/9507396.

[12]  N. Cabibbo,et al.  The Drell-Hearn sum rule and the lepton magnetic moment in the Weinberg model of weak and electromagnetic interactions , 1972 .

[13]  Alan D. Martin,et al.  Review of Particle Physics , 2018, Physical Review D.

[14]  A. Chapelain The Muon g-2 experiment at Fermilab , 2017, 1701.02807.

[15]  Yoshimitsu Shimizu,et al.  Automatic Computation of Cross Sections in HEP , 2000 .

[16]  Georg Weiglein,et al.  Electroweak and supersymmetric two-loop corrections to (g−2)μ , 2004 .

[17]  D. Stöckinger,et al.  The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement , 2013, 1306.5546.

[18]  Refinements in electroweak contributions to the muon anomalous magnetic moment , 2003 .

[19]  Z. Hioki,et al.  Electroweak Theory. Framework of On-Shell Renormalization and Study of Higher Order Effects , 1982 .

[20]  P. Cvitanović,et al.  New approach to the separation of ultraviolet and infrared divergences of Feynman-parametric integrals , 1974 .

[21]  N. Kroll,et al.  Fourth-Order Corrections in Quantum Electrodynamics and the Magnetic Moment of the Electron , 1949 .

[22]  J. Fujimoto,et al.  GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks , 2003, hep-ph/0308080.

[23]  Muon g-2 , 2003, hep-ex/0309008.

[24]  C. Sommerfield MAGNETIC DIPOLE MOMENT OF THE ELECTRON , 1957 .

[25]  M. Davier,et al.  Erratum to: Reevaluation of the hadronic contributions to the muon g−2 and to $\alpha(M_{Z}^{2})$ , 2012 .

[26]  M. Davier,et al.  Reevaluation of the hadronic contributions to the muon g−2 and to $\alpha (M^{2}_{Z})$ , 2010, 1010.4180.

[27]  Yoshimitsu Shimizu,et al.  Radiative Corrections to e+e− Reactions in Electroweak Theory , 1990 .

[28]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[29]  Electroweak fermion-loop contributions to the muon anomalous magnetic moment. , 1995, Physical review. D, Particles and fields.

[30]  M. Otani Status of the Muon g-2/EDM Experiment at J-PARC (E34) , 2015 .

[31]  S. Weinberg,et al.  Weak-Interaction Corrections to the Muon Magnetic Moment and to Muonic-Atom Energy Levels , 1972 .

[32]  K. Shizuya Renormalization of gauge theories with non-linear gauge conditions , 1976 .

[33]  J.A.M. Vermaseren,et al.  New features of FORM , 2000 .

[34]  P. Marquard The anomalous magnetic moment of the muon: Theory update , 2015 .

[35]  Charles M Sommerfield,et al.  The magnetic moment of the electron , 1958 .

[36]  A. Vainshtein,et al.  H adronic Light{by{Light Scattering C ontribution to the M uon A nom alous M agnetic M om ent , 2009, 0901.0306.

[37]  M. Hare,et al.  Publisher’s Note: Measurement of the Positive Muon Anomalous Magnetic Moment to 0.7 ppm [Phys. Rev. Lett.89, 101804 (2002)] , 2002 .

[38]  K. Fujikawa,et al.  GENERALIZED RENORMALIZABLE GAUGE FORMULATION OF SPONTANEOUSLY BROKEN GAUGE THEORIES. , 1972 .

[39]  K. Fujikawa Xi-limiting process in spontaneously broken gauge theories , 1973 .

[40]  Final report of the E821 muon anomalous magnetic moment measurement at BNL , 2006, hep-ex/0602035.

[41]  M. Hayakawa,et al.  Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. , 2012, Physical review letters.

[42]  W. Gohn THE MUON g-2 EXPERIMENT AT FERMILAB , 2016, Particle Physics at the Silver Jubilee of Lomonosov Conferences.

[43]  Andreas Petermann Fourth order magnetic moment of the electron , 1957 .

[44]  W. Marciano,et al.  Erratum: Refinements in electroweak contributions to the muon anomalous magnetic moment [Phys. Rev. D 67, 073006 (2003)] , 2006 .

[45]  P. Cvitanović,et al.  Feynman-Dyson rules in parametric space , 1974 .

[46]  Elise de Doncker,et al.  Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals , 2017, Comput. Phys. Commun..