Transmission through a two dimensional quantum metamaterial

We begin to explore the possibilities offered by two-dimensional quantum metamaterials by considering the transmission across a prototypical system, that is a square array of coupled qubits (two level quantum systems). We construct a simple model that accounts for the input and detection of propagating excitations in the system. We find that even a limited degree of control through an applied field can allow the tunability between distinctly different regimes of transmission properties.

[1]  Didier Felbacq,et al.  Quantum metamaterials: a brave new world , 2012 .

[2]  Alexandre M. Zagoskin,et al.  Quantum engineering , 2022, Physics Subject Headings (PhySH).

[3]  A. A. Abdumalikov,et al.  Electromagnetically induced transparency on a single artificial atom. , 2010, Physical review letters.

[4]  S. Filipp,et al.  Observation of entanglement between itinerant microwave photons and a superconducting qubit. , 2012, Physical review letters.

[5]  E. Solano,et al.  Microwave photonics with Josephson junction arrays: Negative refraction index and entanglement through disorder , 2011, 1110.1184.

[6]  Sergey V. Shitov,et al.  Low-loss tunable metamaterials using superconducting circuits with Josephson junctions , 2013, 1301.0440.

[7]  A. M. Zagoskin,et al.  Is a single photon's wave front observable? , 2012, 1211.4182.

[8]  C J Harland,et al.  Quantum Downconversion and Multipartite Entanglement via a Mesoscopic Superconducting Quantum Interference Device Ring , 2005 .

[9]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[10]  Didier Felbacq A quantum way for metamaterials , 2011 .

[11]  H. Prance,et al.  Quantum Statistics and Entanglement of Two Electromagnetic Field Modes Coupled via a Mesoscopic SQUID Ring , 2001 .

[12]  Jack Lidmar,et al.  Josephson junction transmission lines as tunable artificial crystals , 2008, 0804.2099.

[13]  H. Prance,et al.  Fully quantum-mechanical model of a SQUID ring coupled to an electromagnetic field , 2001 .

[14]  Fernando Quijandría,et al.  Circuit QED bright source for chiral entangled light based on dissipation. , 2012, Physical review letters.

[15]  Nikolay I. Zheludev The road ahead for active controllable and quantum metamaterials , 2010 .

[16]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[17]  Franco Nori,et al.  Quantum metamaterials: Electromagnetic waves in a Josephson qubit line , 2007, 0709.1314.

[18]  J. J. Garcia-Ripoll,et al.  Scattering of coherent states on a single artificial atom , 2012, 1210.2264.

[19]  Franco Nori,et al.  Quantum metamaterials: Electromagnetic waves in Josephson qubit lines , 2009 .

[20]  O. Astafiev,et al.  Resonance Fluorescence of a Single Artificial Atom , 2010, Science.

[21]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[22]  Andrew D Greentree,et al.  Reconfigurable quantum metamaterials. , 2010, Optics express.

[23]  Yakir Aharonov,et al.  Topological Quantum Effects for Neutral Particles , 1984 .

[24]  Alexandre M. Zagoskin,et al.  Superconducting quantum metamaterials in 3D: possible realizations , 2012 .

[25]  Jeff F. Young,et al.  Engineering silicon-based photonic crystal cavities for NV-center quantum information processing , 2010 .

[26]  Io-Chun Hoi,et al.  Generation of nonclassical microwave states using an artificial atom in 1D open space. , 2012, Physical review letters.

[27]  A. A. Abdumalikov,et al.  Ultimate on-chip quantum amplifier. , 2010, Physical review letters.

[28]  C. J. Harland,et al.  Energy downconversion between classical electromagnetic fields via a quantum mechanical SQUID ring , 2005 .