Biomolecular Simulations under Realistic Macroscopic Salt Conditions

Biomolecular simulations are typically performed in an aqueous environment where the number of ions remains fixed for the duration of the simulation, generally with either a minimally neutralizing ion environment or a number of salt pairs intended to match the macroscopic salt concentration. In contrast, real biomolecules experience local ion environments where the salt concentration is dynamic and may differ from bulk. The degree of salt concentration variability and average deviation from the macroscopic concentration remains, as yet, unknown. Here, we describe the theory and implementation of a Monte Carlo osmostat that can be added to explicit solvent molecular dynamics or Monte Carlo simulations to sample from a semigrand canonical ensemble in which the number of salt pairs fluctuates dynamically during the simulation. The osmostat reproduce the correct equilibrium statistics for a simulation volume that can exchange ions with a large reservoir at a defined macroscopic salt concentration. To achieve useful Monte Carlo acceptance rates, the method makes use of nonequilibrium candidate Monte Carlo (NCMC) moves in which monovalent ions and water molecules are alchemically transmuted using short nonequilibrium trajectories, with a modified Metropolis-Hastings criterion ensuring correct equilibrium statistics for an (Δµ, N, p, T) ensemble. We demonstrate how typical protein (DHFR and the tyrosine kinase Src) and nucleic acid (Drew-Dickerson B-DNA dodecamer) systems exhibit salt concentration distributions that significantly differ from fixed-salt bulk simulations and display fluctuations that are on the same order of magnitude as the average.

[1]  J. Shelley,et al.  A configuration bias Monte Carlo method for ionic solutions , 1994 .

[2]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[3]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[4]  W. Linehan,et al.  Ionic immune suppression within the tumour microenvironment limits T cell effector function , 2016, Nature.

[5]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[6]  Gavin E Crooks,et al.  Measuring thermodynamic length. , 2007, Physical review letters.

[7]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[8]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[9]  T. Härd,et al.  Salt Dependence of the Free Energy, Enthalpy, and Entropy of Nonsequence Specific DNA Binding , 1996 .

[10]  Nathan A. Baker,et al.  ISIM: A Program for Grand Canonical Monte Carlo Simulations of the Ionic Environment of Biomolecules , 2004 .

[11]  Yifan Song,et al.  Using multiconformation continuum electrostatics to compare chloride binding motifs in alpha-amylase, human serum albumin, and Omp32. , 2009, Journal of molecular biology.

[12]  Charles A Laughton,et al.  Exploring the counterion atmosphere around DNA: what can be learned from molecular dynamics simulations? , 2004, Biophysical journal.

[13]  E. Lieb,et al.  The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei , 1972 .

[14]  K. Dill,et al.  A View of the Hydrophobic Effect , 2002 .

[15]  M. Lísal,et al.  Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid. , 2012, The journal of physical chemistry. B.

[16]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[17]  A. Dandekar,et al.  Molecular Biology of Osmoregulation , 1984, Science.

[18]  Grant M. Rotskoff,et al.  Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Z. Tan Optimally Adjusted Mixture Sampling and Locally Weighted Histogram Analysis , 2017 .

[20]  B. Roux,et al.  Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method , 2015, Journal of chemical theory and computation.

[21]  Grant M. Rotskoff,et al.  Geometric approach to optimal nonequilibrium control: Minimizing dissipation in nanomagnetic spin systems. , 2016, Physical review. E.

[22]  C. Horváth,et al.  Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. , 1977, Archives of biochemistry and biophysics.

[23]  Kelly M. Thayer,et al.  Ion motions in molecular dynamics simulations on DNA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[25]  Winston Ong,et al.  Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex. , 2004, The Journal of organic chemistry.

[26]  Gregory A Ross,et al.  Water Sites, Networks, And Free Energies with Grand Canonical Monte Carlo. , 2015, Journal of the American Chemical Society.

[27]  Franz Hofmeister,et al.  Zur Lehre von der Wirkung der Salze , 1891, Archiv für experimentelle Pathologie und Pharmakologie.

[28]  Vijay S Pande,et al.  CCMA: A Robust, Parallelizable Constraint Method for Molecular Simulations. , 2010, Journal of chemical theory and computation.

[29]  C. Vega,et al.  Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route. , 2016, The Journal of chemical physics.

[30]  M. Vicente The Concept of Ionic Strength Eighty Years after Its Introduction in Chemistry. , 2004 .

[31]  Jason A. Wagoner,et al.  Reducing the effect of Metropolization on mixing times in molecular dynamics simulations. , 2012, The Journal of chemical physics.

[32]  William L. Jorgensen,et al.  Free energy of TIP4P water and the free energies of hydration of CH4 and Cl- from statistical perturbation theory , 1989 .

[33]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[34]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[35]  F. Liang A Generalized Wang–Landau Algorithm for Monte Carlo Computation , 2005 .

[36]  V. Uversky,et al.  Encyclopedia of Metalloproteins , 2013, Springer New York.

[37]  Klaus Schulten,et al.  Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems. , 2017, Journal of chemical theory and computation.

[38]  P. Auffinger,et al.  Treatment of Counterions in Computer Simulations of DNA , 2007 .

[39]  M. Record,et al.  Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. , 2007, The journal of physical chemistry. B.

[40]  Juan J. de Pablo,et al.  Constant pressure hybrid Molecular Dynamics-Monte Carlo simulations , 2002 .

[41]  Gavin E. Crooks,et al.  Excursions in Statistical Dynamics , 1999 .

[42]  Tanneguy Redarce,et al.  Automatic Lip-Contour Extraction and Mouth-Structure Segmentation in Images , 2011, Computing in Science & Engineering.

[43]  Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal. , 2014, The Journal of chemical physics.

[44]  Matthew P. Jacobson,et al.  Dysregulated pH: a perfect storm for cancer progression , 2011, Nature Reviews Cancer.

[45]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[46]  B. Leimkuhler,et al.  Molecular Dynamics: With Deterministic and Stochastic Numerical Methods , 2015 .

[47]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[48]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[49]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[50]  Nathan A. Baker,et al.  GIBS: A grand-canonical Monte Carlo simulation program for simulating ion-biomolecule interactions , 2017, 1704.05534.

[51]  Arunima Chaudhuri,et al.  Cell Biology by the Numbers , 2016, The Yale Journal of Biology and Medicine.

[52]  William R. Smith,et al.  Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl. , 2011, The journal of physical chemistry. B.

[53]  Jennifer L. Knight,et al.  Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. , 2015, Journal of the American Chemical Society.

[54]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[55]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[56]  J. Šponer,et al.  Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. , 2015, Journal of chemical theory and computation.

[57]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[58]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[59]  O. Hammarsten,et al.  DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  David D L Minh,et al.  Estimating equilibrium ensemble averages using multiple time slices from driven nonequilibrium processes: theory and application to free energies, moments, and thermodynamic length in single-molecule pulling experiments. , 2010, The Journal of chemical physics.

[61]  G. Kontopidis,et al.  Quantification of the effects of ionic strength, viscosity, and hydrophobicity on protein-ligand binding affinity. , 2014, ACS medicinal chemistry letters.

[62]  Benoît Roux,et al.  Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations. , 2016, The Journal of chemical physics.

[63]  Helmut Grubmüller,et al.  Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge. , 2014, Journal of chemical theory and computation.

[64]  Michael R. Shirts,et al.  Replica exchange and expanded ensemble simulations as Gibbs sampling: simple improvements for enhanced mixing. , 2011, The Journal of chemical physics.

[65]  Christophe Andrieu,et al.  Annealed Importance Sampling Reversible Jump MCMC Algorithms , 2013 .

[66]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[67]  R. Moore,et al.  A possible mechanism for concentrating sodium and potassium in the cell nucleus. , 1976, Biophysical journal.

[68]  Gregory A Ross,et al.  Replica-Exchange and Standard State Binding Free Energies with Grand Canonical Monte Carlo , 2017, Journal of chemical theory and computation.

[69]  Richard M. Noyes,et al.  Thermodynamics of Ion Hydration as a Measure of Effective Dielectric Properties of Water , 1962 .

[70]  William R. Smith,et al.  Molecular simulations of aqueous electrolyte solubility: 1. The expanded-ensemble osmotic molecular dynamics method for the solution phase. , 2005, The journal of physical chemistry. B.

[71]  C. Atkinson Rao's distance measure , 1981 .

[72]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[73]  V. Durmaz,et al.  A nontoxic pain killer designed by modeling of pathological receptor conformations , 2017, Science.

[74]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[75]  V. Sapunov,et al.  A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii) , 2000 .

[76]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[77]  John D Chodera,et al.  A Simple Method for Automated Equilibration Detection in Molecular Simulations. , 2016, Journal of chemical theory and computation.

[78]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[79]  Grant M. Rotskoff,et al.  Near-optimal protocols in complex nonequilibrium transformations , 2016, Proceedings of the National Academy of Sciences.

[80]  Eric Barth,et al.  Algorithms for constrained molecular dynamics , 1995, J. Comput. Chem..

[81]  David D L Minh,et al.  Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation , 2011, Proceedings of the National Academy of Sciences.

[82]  John D. Chodera,et al.  Using Nonequilibrium Fluctuation Theorems to Understand and Correct Errors in Equilibrium and Nonequ , 2011, 1107.2967.

[83]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[84]  Jascha Sohl-Dickstein,et al.  Hamiltonian Monte Carlo with Reduced Momentum Flips , 2012, ArXiv.

[85]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[86]  Haruki Nakamura,et al.  Non-Ewald methods: theory and applications to molecular systems , 2012, Biophysical Reviews.

[87]  Nawaf Bou-Rabee,et al.  A comparison of generalized hybrid Monte Carlo methods with and without momentum flip , 2009, J. Comput. Phys..

[88]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[89]  Mihaly Mezei,et al.  Automatic Control of Solvent Density in Grand Canonical Ensemble Monte Carlo Simulations. , 2006, Journal of chemical theory and computation.

[90]  Ken A Dill,et al.  How ions affect the structure of water. , 2002, Journal of the American Chemical Society.

[91]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[92]  B Honig,et al.  Salt effects on ligand-DNA binding. Minor groove binding antibiotics. , 1994, Journal of molecular biology.

[93]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[94]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[95]  David A. Sivak,et al.  Thermodynamic metrics and optimal paths. , 2012, Physical review letters.