On the dimension of spline spaces over T-meshes with smoothing cofactor-conformality method

This paper provides a general formula for the dimension of spline space over general planar T-meshes (having concave corners or holes) by using the smoothing cofactor-conformality method. We introduce a new notion, the diagonalizable T-mesh, where the dimension formula is only associated with the topological information of the T-mesh. A necessary and sufficient condition for characterization of the diagonalizable T-mesh is also provided. By this new notion, we obtain some new dimension results for the spline spaces over T-meshes. A general formula for the dimension of the spline space over the T-mesh is provided.The diagonalizable T-mesh is introduced.A necessary and sufficient condition to characterize the diagonalizable T-meshes is proved.Some new dimension results for the spline space over T-meshes that do not have a nested structure is provided.

[1]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[2]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[3]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[4]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[5]  Jiansong Deng,et al.  Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..

[6]  Meng Wu,et al.  Dimension of spline spaces with highest order smoothness over hierarchical T-meshes , 2011, Comput. Aided Geom. Des..

[7]  G. Sangalli,et al.  IsoGeometric Analysis using T-splines , 2012 .

[8]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[9]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[10]  Ren-hong Wang Multivariate Spline Functions and Their Applications , 2001 .

[11]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[12]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[13]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[14]  Larry L. Schumaker,et al.  Spline spaces on TR-meshes with hanging vertices , 2011, Numerische Mathematik.

[15]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[16]  Falai Chen,et al.  On the instability in the dimension of splines spaces over T-meshes , 2011, Comput. Aided Geom. Des..

[17]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[18]  Jiansong Deng,et al.  Surface Modeling with Polynomial Splines over Hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[19]  Li Tian,et al.  Adaptive finite element methods for elliptic equations over hierarchical T-meshes , 2011, J. Comput. Appl. Math..

[20]  L. Schumaker On the Dimension of Spaces Of Piecewise Polynomials in Two Variables , 1979 .

[21]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[22]  Bernard Mourrain,et al.  On the problem of instability in the dimension of a spline space over a T-mesh , 2012, Comput. Graph..

[23]  Bernard Mourrain,et al.  On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..

[24]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[25]  Guo,et al.  ON THE PROBLEM OF INSTABILITY IN THE DIMENSIONS OF SPLINE SPACES OVER T-MESHES WITH T-CYCLES * , 2015 .

[26]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[27]  Juan Chen,et al.  On the dimensions of bivariate spline spaces and the stability of the dimensions , 2011, J. Comput. Appl. Math..

[28]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[29]  G. Farin NURB curves and surfaces: from projective geometry to practical use , 1995 .

[30]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[31]  Fang Deng,et al.  Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..

[32]  Annalisa Buffa,et al.  Characterization of T-splines with reduced continuity order on T-meshes , 2012 .

[33]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[34]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[35]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[36]  Larry L. Schumaker,et al.  Approximation power of polynomial splines on T-meshes , 2012, Comput. Aided Geom. Des..

[37]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[38]  Larry L. Schumaker,et al.  Splines on Triangulations with Hanging Vertices , 2012 .