Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targets

The resilience of Plasmodium vivax, the most widely distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite’s influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response were upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.

[1]  D. Kyle,et al.  Liver-stage fate determination in Plasmodium vivax parasites: Characterization of schizont growth and hypnozoite fating from patient isolates , 2022, bioRxiv.

[2]  Vincent L. Butty,et al.  A single-cell liver atlas of Plasmodium vivax infection. , 2022, Cell host & microbe.

[3]  V. Heussler,et al.  Plasmodium berghei-Mediated NRF2 Activation in Infected Hepatocytes Enhances Parasite Survival , 2022, Cellular Microbiology.

[4]  I. Amit,et al.  A spatiotemporally resolved single cell atlas of the Plasmodium liver stage , 2021, bioRxiv.

[5]  I. Mueller,et al.  Single-cell RNA sequencing of Plasmodium vivax sporozoites reveals stage- and species-specific transcriptomic signatures , 2021, bioRxiv.

[6]  Vincent L. Butty,et al.  Gene signatures and host-parasite interactions revealed by dual single-cell profiling of Plasmodium vivax liver infection , 2021, bioRxiv.

[7]  Elizabeth K. K. Glennon,et al.  Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. , 2021, Chemical reviews.

[8]  A. Vaughan,et al.  Plasmodium vivax Latent Liver Stage Infection and Relapse: Biological Insights and New Experimental Tools. , 2021, Annual review of microbiology.

[9]  A. S. Booeshaghi,et al.  Modular, efficient and constant-memory single-cell RNA-seq preprocessing , 2021, Nature Biotechnology.

[10]  Sinead E. Morris,et al.  Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19 , 2021, Immunity.

[11]  D. Serre,et al.  Transcriptional heterogeneity and tightly regulated changes in gene expression during Plasmodium berghei sporozoite development , 2021, Proceedings of the National Academy of Sciences.

[12]  T. Obadia,et al.  Single-cell RNA sequencing reveals developmental heterogeneity among Plasmodium berghei sporozoites , 2021, Scientific Reports.

[13]  Pingping Wang,et al.  COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas , 2021, Cell.

[14]  D. Kyle,et al.  Probing the distinct chemosensitivity of Plasmodium vivax liver stage parasites and demonstration of 8-aminoquinoline radical cure activity in vitro , 2021, Scientific Reports.

[15]  Pingping Wang,et al.  COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas , 2021, Cell.

[16]  Mira S. Davidson,et al.  A single-cell atlas of Plasmodium falciparum transmission through the mosquito , 2020, Nature Communications.

[17]  Zheng Hu,et al.  AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway , 2020, Cell & Bioscience.

[18]  D. Kyle,et al.  A Phenotypic Screen for the Liver Stages of Plasmodium vivax. , 2021, Bio-protocol.

[19]  K. Clément,et al.  Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis , 2020, Science Translational Medicine.

[20]  S. Teichmann,et al.  Single cell transcriptomics comes of age , 2020, Nature Communications.

[21]  Erika L. Flannery,et al.  A Humanized Mouse Model for Plasmodium vivax to Test Interventions that Block Liver Stage to Blood Stage Transition and Blood Stage Infection , 2020, iScience.

[22]  Young Chan Kim,et al.  Evaluation of Chimpanzee Adenovirus and MVA Expressing TRAP and CSP from Plasmodium cynomolgi to Prevent Malaria Relapse in Nonhuman Primates , 2020, Vaccines.

[23]  R. Price,et al.  Estimating the Proportion of Plasmodium vivax Recurrences Caused by Relapse: A Systematic Review and Meta-Analysis , 2020, The American journal of tropical medicine and hygiene.

[24]  A. Antebi,et al.  NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin , 2020, Nature metabolism.

[25]  Juliana M. Sá,et al.  Single-cell transcription analysis of Plasmodium vivax blood-stage parasites identifies stage- and species-specific profiles of expression , 2020, PLoS biology.

[26]  D. Kyle,et al.  Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3 , 2020, Cell chemical biology.

[27]  J. Rayner,et al.  Analysis of Plasmodium vivax schizont transcriptomes from field isolates reveals heterogeneity of expression of genes involved in host-parasite interactions , 2020, Scientific Reports.

[28]  D. Kyle,et al.  An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. , 2020, Lab on a chip.

[29]  Recombinant Antibody , 2020, Definitions.

[30]  Aldo-Keto Reductase Family 1 Member C2 , 2020, Definitions.

[31]  C. Kocken,et al.  A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation , 2020, Communications Biology.

[32]  Kayla Sylvester,et al.  RNA-Seq Analysis Illuminates the Early Stages of Plasmodium Liver Infection , 2019, mBio.

[33]  Carfilzomib , 2019, Reactions Weekly.

[34]  A. Gingras,et al.  Properties of Stress Granule and P-Body Proteomes. , 2019, Molecular cell.

[35]  J. Rayner,et al.  The Malaria Cell Atlas: Single parasite transcriptomes across the complete Plasmodium life cycle , 2019, Science.

[36]  M. Galinski,et al.  Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages , 2019, Nature Communications.

[37]  Yen-Lin Chen,et al.  CCAAT/enhancer-binding protein delta regulates the stemness of glioma stem-like cells through activating PDGFA expression upon inflammatory stimulation , 2019, Journal of Neuroinflammation.

[38]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[39]  Kristian E. Swearingen,et al.  Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. , 2019, International journal for parasitology.

[40]  Erika L. Flannery,et al.  The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development , 2019, eLife.

[41]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[42]  Samantha Riesenfeld,et al.  EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2019, Genome Biology.

[43]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[44]  P. Preiser,et al.  Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development , 2019, Nature Microbiology.

[45]  M. Schmid,et al.  Transcriptome analysis of Plasmodium berghei during exo-erythrocytic development , 2019, Malaria Journal.

[46]  Ryan R. Wick,et al.  Performance of neural network basecalling tools for Oxford Nanopore sequencing , 2019, Genome Biology.

[47]  D. Hung,et al.  Single-Cell RNA Sequencing to Understand Host-Pathogen Interactions. , 2019, ACS infectious diseases.

[48]  E. Winzeler,et al.  Dual RNA-seq identifies human mucosal immunity protein Mucin-13 as a hallmark of Plasmodium exoerythrocytic infection , 2019, Nature Communications.

[49]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[50]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[51]  Gary D Bader,et al.  Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations , 2018, Nature Communications.

[52]  S. Kappe,et al.  A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages , 2018, Malaria Journal.

[53]  P. Walker,et al.  Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax , 2018, Nature Communications.

[54]  S. Kappe,et al.  A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum , 2018, Nature Communications.

[55]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[56]  Oliver Billker,et al.  Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites , 2018, eLife.

[57]  Vincent L. Butty,et al.  In Vitro Culture, Drug Sensitivity, and Transcriptome of Plasmodium Vivax Hypnozoites. , 2018, Cell host & microbe.

[58]  Matthias W. Hentze,et al.  A brave new world of RNA-binding proteins , 2018, Nature Reviews Molecular Cell Biology.

[59]  G. Bonamy,et al.  A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi , 2017, eLife.

[60]  O. Elemento,et al.  Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites , 2017, Nature.

[61]  I. Mueller,et al.  The Biology of Plasmodium vivax. , 2017, Cold Spring Harbor perspectives in medicine.

[62]  Alyssa J Miller,et al.  Toxoplasma depends on lysosomal consumption of autophagosomes for persistent infection , 2017, Nature Microbiology.

[63]  David M. Shackleford,et al.  Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase , 2017, Science Translational Medicine.

[64]  M. White,et al.  Theoretical Implications of a Pre-Erythrocytic Plasmodium vivax Vaccine for Preventing Relapses , 2017, Trends in parasitology.

[65]  A. Biton,et al.  Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species , 2017, Cellular microbiology.

[66]  Y. Tsai,et al.  Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway , 2017, Oncotarget.

[67]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[68]  Gary D. Bader,et al.  AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations , 2016, F1000Research.

[69]  E. Bunnik,et al.  The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum , 2016, Genome Biology.

[70]  S. Vembar,et al.  Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems‐wide studies pave the way , 2016, Wiley interdisciplinary reviews. RNA.

[71]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[72]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[73]  M. Ford,et al.  Single‐Cell Transcriptomics Comes of Age , 2016, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[74]  J. Hayes,et al.  Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. , 2015, Free radical biology & medicine.

[75]  Q. Bassat,et al.  Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model , 2015, PLoS medicine.

[76]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[77]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[78]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[79]  A. Vaughan,et al.  Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. , 2015, Cell host & microbe.

[80]  M. Davenport,et al.  Modeling the Dynamics of Plasmodium vivax Infection and Hypnozoite Reactivation In Vivo , 2015, PLoS neglected tropical diseases.

[81]  A. Shevchenko,et al.  Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection , 2014, Cell host & microbe.

[82]  S. Gerstberger,et al.  A census of human RNA-binding proteins , 2014, Nature Reviews Genetics.

[83]  Jianlong Wang,et al.  RNA-binding proteins in pluripotency, differentiation, and reprogramming , 2014, Frontiers in Biology.

[84]  M. Di Cristina,et al.  Toxoplasma gondii Ingests and Digests Host Cytosolic Proteins , 2014, mBio.

[85]  A. Vaughan,et al.  Interferon-mediated innate immune responses against malaria parasite liver stages. , 2014, Cell reports.

[86]  David L. Smith,et al.  Geographical variation in Plasmodium vivax relapse , 2014, Malaria Journal.

[87]  J. Hayes,et al.  The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. , 2014, Trends in biochemical sciences.

[88]  G. Superti-Furga,et al.  Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection , 2013, Nature Medicine.

[89]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[90]  Roy Parker,et al.  P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. , 2012, Cold Spring Harbor perspectives in biology.

[91]  M. Mota,et al.  Innate recognition of malarial parasites by mammalian hosts. , 2012, International Journal of Parasitology.

[92]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[93]  P. Sassone-Corsi,et al.  RNA granules in germ cells. , 2011, Cold Spring Harbor perspectives in biology.

[94]  J. Neefjes,et al.  Towards a systems understanding of MHC class I and MHC class II antigen presentation , 2011, Nature Reviews Immunology.

[95]  N. White Determinants of relapse periodicity in Plasmodium vivax malaria , 2011, Malaria Journal.

[96]  J. Rayner,et al.  CCR4-Associated Factor 1 Coordinates the Expression of Plasmodium falciparum Egress and Invasion Proteins , 2011, Eukaryotic Cell.

[97]  F. Gago,et al.  Identification of aldo-keto reductase AKR1B10 as a selective target for modification and inhibition by prostaglandin A(1): implications for antitumoral activity. , 2011, Cancer research.

[98]  Zbynek Bozdech,et al.  Quantitative Time-course Profiling of Parasite and Host Cell Proteins in the Human Malaria Parasite Plasmodium falciparum* , 2011, Molecular & Cellular Proteomics.

[99]  P. Rosenthal Falcipains and other cysteine proteases of malaria parasites. , 2011, Advances in experimental medicine and biology.

[100]  M. Bedaiwy,et al.  In vitro culture , 2011, Journal of Assisted Reproduction and Genetics.

[101]  Organização Mundial de Saúde,et al.  World malaria report 2011 , 2011 .

[102]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[103]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[104]  I. Coppens,et al.  Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii , 2010, Molecular microbiology.

[105]  L. Cui,et al.  The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum , 2010, Journal of Cell Science.

[106]  K. Watabe,et al.  Aldo-keto Reductase Family 1 Member B10 Promotes Cell Survival by Regulating Lipid Synthesis and Eliminating Carbonyls* , 2009, Journal of Biological Chemistry.

[107]  Xinxia Peng,et al.  Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events , 2009, BMC Genomics.

[108]  E. Maser,et al.  Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes. , 2009, Chemico-biological interactions.

[109]  Juha Merilä,et al.  A first-generation microsatellite-based genetic linkage map of the Siberian jay (Perisoreus infaustus): insights into avian genome evolution , 2009, BMC Genomics.

[110]  William Stafford Noble,et al.  Transcription , 2003, Chemistry and Biology of Non‐Canonical Nucleic Acids.

[111]  P. Rosenthal,et al.  Plasmodium Food Vacuole Plasmepsins Are Activated by Falcipains* , 2008, Journal of Biological Chemistry.

[112]  E. Winzeler,et al.  Plasmodium Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite , 2008, Cell.

[113]  Xinxia Peng,et al.  A combined transcriptome and proteome survey of malaria parasite liver stages , 2008, Proceedings of the National Academy of Sciences.

[114]  K. Heliövaara,et al.  Natural relapses in vivax malaria induced by Anopheles mosquitoes , 2008, Malaria Journal.

[115]  E. Winzeler,et al.  Plasmodium Circumsporozoite Protein Promotes the Development of the Liver Stages of the Parasite , 2007, Cell.

[116]  J. Sacci,et al.  CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes , 2007, Nature Medicine.

[117]  Junfei Jin,et al.  Role of aldo-keto reductases in development of prostate and breast cancer. , 2006, Frontiers in bioscience : a journal and virtual library.

[118]  J. Sattabongkot,et al.  Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. , 2006, The American journal of tropical medicine and hygiene.

[119]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[120]  Hiroyuki Aburatani,et al.  Overexpression of the Aldo-Keto Reductase Family Protein AKR1B10 Is Highly Correlated with Smokers' Non–Small Cell Lung Carcinomas , 2005, Clinical Cancer Research.

[121]  Weltgesundheitsorganisation World malaria report , 2005 .

[122]  D. Bissell,et al.  Hemoglobin and Erythrocyte Catabolism in Rat Liver : 812 Blood , 2005 .

[123]  Yingyao Zhou,et al.  Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. , 2004, Genome research.

[124]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[125]  C. Craik,et al.  Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. , 2004, The Biochemical journal.

[126]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[127]  J. Dame,et al.  Plasmepsin 4, the food vacuole aspartic proteinase found in all Plasmodium spp. infecting man. , 2003, Molecular and biochemical parasitology.

[128]  R. Scarpulla Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. , 2002, Gene.

[129]  R. Parker,et al.  The Transcription Factor Associated Ccr4 and Caf1 Proteins Are Components of the Major Cytoplasmic mRNA Deadenylase in Saccharomyces cerevisiae , 2001, Cell.

[130]  P. Rosenthal,et al.  Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase , 1995, Infection and immunity.

[131]  Y. Taketani,et al.  Enzymatic inactivation of leukotriene B4 by a novel enzyme found in the porcine kidney. Purification and properties of leukotriene B4 12-hydroxydehydrogenase. , 1993, The Journal of biological chemistry.

[132]  F. Cogswell The hypnozoite and relapse in primate malaria , 1992, Clinical Microbiology Reviews.

[133]  R. Sinden,et al.  Observations on early and late post-sporozoite tissue stages in primate malaria. IV. Pre-erythrocytic schizonts and/or hypnozoites of Chesson and North Korean strains of Plasmodium vivax in the chimpanzee. , 1986, The American journal of tropical medicine and hygiene.

[134]  C. C. Campbell,et al.  In vitro culture of two populations (dividing and nondividing) of exoerythrocytic parasites of Plasmodium vivax. , 1985, The American journal of tropical medicine and hygiene.

[135]  R. Sinden,et al.  Observations on early and late post-sporozoite tissue stages in primate malaria. III. Further attempts to find early forms and to correlate hypnozoites with growing exo-erythrocytic schizonts and parasitaemic relapses in Plasmodium cynomolgi bastianellii infections. , 1985, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[136]  R. Sinden,et al.  Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. , 1982, The American journal of tropical medicine and hygiene.

[137]  Lysenko Aj,et al.  Population studies of Plasmodium vivax. 1. The theory of polymorphism of sporozoites and epidemiological phenomena of tertian malaria. , 1977 .

[138]  A. J. Lysenko,et al.  Population studies of Plasmodium vivax. 1. The theory of polymorphism of sporozoites and epidemiological phenomena of tertian malaria. , 1977, Bulletin of the World Health Organization.

[139]  P. G. Shute,et al.  Prepatent periods of a tropical strain of Plasmodium vivax after inoculations of tenfold dilutions of sporozoites. , 1976, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[140]  D. Bissell,et al.  Hemoglobin and erythrocyte catabolism in rat liver: the separate roles of parenchymal and sinusoidal cells. , 1972, Blood.