An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems
暂无分享,去创建一个
[1] G. Watson. Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .
[2] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[3] Ivo Babuška,et al. Lectures on mathematical foundations of the finite element method. , 1972 .
[4] J. Craggs. Applied Mathematical Sciences , 1973 .
[5] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[6] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[7] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[8] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[9] M. Birman,et al. L2-Theory of the Maxwell operator in arbitrary domains , 1987 .
[10] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[11] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[12] Peter Monk,et al. A posteriori error indicators for Maxwell's equations , 1998 .
[13] E. Turkel,et al. Absorbing PML boundary layers for wave-like equations , 1998 .
[14] Peter Monk,et al. The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..
[15] Christophe Hazard,et al. A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..
[16] Kunibert G. Siebert,et al. ALBERT: An adaptive hierarchical nite element toolbox , 2000 .
[17] R. Hoppe,et al. Residual based a posteriori error estimators for eddy current computation , 2000 .
[18] J. Nédélec. Acoustic and electromagnetic equations , 2001 .
[19] J. Nédélec. Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .
[20] Weng Cho Chew,et al. Advances in the theory of perfectly matched layers , 2001 .
[21] Frank Schmidt,et al. Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory , 2003, SIAM J. Math. Anal..
[22] Haijun Wu,et al. An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures , 2003, SIAM J. Numer. Anal..
[23] H. Langtangen,et al. Mixed Finite Elements , 2003 .
[24] Frank Schmidt,et al. Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..
[25] F. Hu. Absorbing Boundary Conditions , 2004 .
[26] Gang Bao,et al. Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..
[27] Zhiming Chen,et al. An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005 .
[28] Weiying Zheng,et al. An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..
[29] Joseph E. Pasciak,et al. Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..
[30] Matti Lassas,et al. On the existence and convergence of the solution of PML equations , 1998, Computing.
[31] Long Chen. FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS , 2010 .