An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems

An adaptive perfectly matched layer (PML) technique for solving the time harmonic electromagnetic scattering problems is developed. The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates. Combined with the adaptive finite element method, the adaptive PML technique provides a complete numerical strategy to solve the scattering problem in the framework of FEM which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the thickness of the PML absorbing layer. Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.

[1]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[2]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[3]  Ivo Babuška,et al.  Lectures on mathematical foundations of the finite element method. , 1972 .

[4]  J. Craggs Applied Mathematical Sciences , 1973 .

[5]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[6]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[7]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[8]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[9]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[10]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[11]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[12]  Peter Monk,et al.  A posteriori error indicators for Maxwell's equations , 1998 .

[13]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[14]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[15]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[16]  Kunibert G. Siebert,et al.  ALBERT: An adaptive hierarchical nite element toolbox , 2000 .

[17]  R. Hoppe,et al.  Residual based a posteriori error estimators for eddy current computation , 2000 .

[18]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[19]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[20]  Weng Cho Chew,et al.  Advances in the theory of perfectly matched layers , 2001 .

[21]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory , 2003, SIAM J. Math. Anal..

[22]  Haijun Wu,et al.  An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures , 2003, SIAM J. Numer. Anal..

[23]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .

[24]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[25]  F. Hu Absorbing Boundary Conditions , 2004 .

[26]  Gang Bao,et al.  Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..

[27]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005 .

[28]  Weiying Zheng,et al.  An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..

[29]  Joseph E. Pasciak,et al.  Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..

[30]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[31]  Long Chen FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS , 2010 .