Fuzzy mixed-integer linear programming model for optimizing a multi-functional bioenergy system with biochar production for negative carbon emissions

A multi-functional bioenergy system is an efficient way for producing multiple energy products from biomass, which results in near-zero carbon emissions. To achieve net negative carbon emissions, biochar production as carbon sequestration can be integrated in the system. A fuzzy mixed-integer linear programming model is developed to simultaneously design and optimize a multi-functional bioenergy system given multiple product demands, carbon footprint, and economic performance constraints. Case studies are presented involving multi-functional bioenergy systems with biochar production for carbon sequestration. The results show that net negative carbon footprint can be achieved in such systems.

[1]  Denny K. S. Ng,et al.  A hybrid optimisation model for the synthesis of sustainable gasification-based integrated biorefinery , 2012 .

[2]  Denny K. S. Ng,et al.  Optimal operational adjustment in multi-functional energy systems in response to process inoperability , 2013 .

[3]  Mei-Shiang Chang A scenario-based mixed integer linear programming model for composite power system expansion planning with greenhouse gas emission controls , 2013, Clean Technologies and Environmental Policy.

[4]  J. J. Klemeš,et al.  An algebraic approach to identifying bottlenecks in linear process models of multifunctional energy systems , 2012, Theoretical Foundations of Chemical Engineering.

[5]  Nan Zhang,et al.  Decarbonised coal energy system advancement through CO2 utilisation and polygeneration , 2012, Clean Technologies and Environmental Policy.

[6]  Luis M. Serra,et al.  Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints , 2010 .

[7]  Luka Zajec,et al.  Slow pyrolysis in a rotary kiln reactor : optimization and experiment , 2010 .

[8]  James M. Douglas,et al.  A hierarchical decision procedure for process synthesis , 1985 .

[9]  Raymond R. Tan,et al.  A fuzzy linear programming extension of the general matrix-based life cycle model , 2008 .

[10]  T. B. Reed,et al.  Heat flux requirements for fast pyrolysis and a new method for generating biomass vapor , 1987 .

[11]  Raymond R. Tan,et al.  Simultaneous carbon footprint allocation and design of trigeneration plants using fuzzy fractional programming , 2013, Clean Technologies and Environmental Policy.

[12]  Simon Shackley,et al.  Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment. , 2012, Waste management.

[13]  Denny K. S. Ng,et al.  Fuzzy optimisation for retrofitting a palm oil mill into a sustainable palm oil-based integrated biorefinery , 2012 .

[14]  Ryan Davis,et al.  Techno-economic analysis of autotrophic microalgae for fuel production , 2011 .

[15]  A. Ingraffea,et al.  Methane and the greenhouse-gas footprint of natural gas from shale formations , 2011 .

[16]  B. McCarl,et al.  Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan , 2013 .

[17]  Francesco Cherubini,et al.  The biorefinery concept: Using biomass instead of oil for producing energy and chemicals , 2010 .

[18]  Göran Berndes,et al.  Multifunctional biomass production systems –an overview with presentation of specific applications in India and Sweden , 2008 .

[19]  Denny K. S. Ng,et al.  Multiple-cascade automated targeting for synthesis of a gasification-based integrated biorefinery. , 2012 .

[20]  T. Minowa,et al.  A novel microalgal system for energy production with nitrogen cycling , 1999 .

[21]  Luis Serra,et al.  Modeling simple trigeneration systems for the distribution of environmental loads , 2012, Environ. Model. Softw..

[22]  K. Lindgren,et al.  The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS) , 2010 .

[23]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[24]  Denny K. S. Ng,et al.  Systematic approach for conceptual design of an integrated biorefinery with uncertainties , 2013, Clean Technologies and Environmental Policy.

[25]  S. Gaur,et al.  An atlas of thermal data for biomass and other fuels , 1995 .

[26]  L. Serra,et al.  Multicriteria synthesis of trigeneration systems considering economic and environmental aspects , 2012 .

[27]  Luis M. Serra,et al.  Operational strategy and marginal costs in simple trigeneration systems , 2009 .

[28]  D. Moran,et al.  Evaluating the cost-effectiveness of global biochar mitigation potential , 2010 .

[29]  Mahmoud M. El-Halwagi,et al.  Synthesis of an integrated biorefinery via the C–H–O ternary diagram , 2011 .

[30]  Luis M. Serra,et al.  Geographic evaluation of trigeneration systems in the tertiary sector. Effect of climatic and electricity supply conditions , 2011 .

[31]  Denny K. S. Ng,et al.  Automated targeting for the synthesis of an integrated biorefinery , 2010 .

[32]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[33]  Young-Kwon Park,et al.  Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. , 2013, Bioresource technology.

[34]  G. Bala Digesting 400 ppm for global mean CO2 concentration , 2013 .

[35]  S. Salvador,et al.  Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties , 2014 .

[36]  Hsien Hui Khoo,et al.  Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions. , 2013, Bioresource technology.

[37]  Gail Taylor,et al.  Biofuels and the biorefinery concept , 2008 .

[38]  David Granatstein,et al.  The economic value of biochar in crop production and carbon sequestration , 2011 .

[39]  D. Laird,et al.  Review of the pyrolysis platform for coproducing bio‐oil and biochar , 2009 .

[40]  Rafiqul Gani,et al.  Optimal design of a multi-product biorefinery system , 2011, Comput. Chem. Eng..

[41]  Efstratios N. Pistikopoulos,et al.  A mixed-integer optimization approach for polygeneration energy systems design , 2009, Comput. Chem. Eng..

[42]  Nilay Shah,et al.  High-level techno-economic assessment of negative emissions technologies , 2012 .

[43]  Carlos Rubio-Maya,et al.  Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources , 2011 .

[44]  Denny K. S. Ng,et al.  Robust Optimization for Process Synthesis and Design of Multifunctional Energy Systems with Uncertainties , 2014 .

[45]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[46]  Anthony V. Bridgwater,et al.  Renewable fuels and chemicals by thermal processing of biomass , 2003 .

[47]  Raymond R. Tan,et al.  A fuzzy multiple-objective approach to the optimization of bioenergy system footprints , 2009 .

[48]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[49]  Dimitrios I. Gerogiorgis,et al.  Modeling and optimization of polygeneration energy systems , 2007 .

[50]  David Granatstein,et al.  Economic tradeoff between biochar and bio-oil production via pyrolysis , 2011 .

[51]  Wojciech M. Budzianowski,et al.  Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs , 2012 .

[52]  P. Eng CO2 emissions from fuel combustion: highlights , 2009 .

[53]  Luis M. Serra,et al.  Structure optimization of energy supply systems in tertiary sector buildings , 2009 .