On Hölder‐continuity of Oseledets subspaces
暂无分享,去创建一个
[1] A. Eskin,et al. Isolation, equidistribution, and orbit closures for the SL(2,R) action on Moduli space , 2013, 1305.3015.
[2] Yakov Pesin,et al. Nonuniform Hyperbolicity: Ergodic Theory of Smooth and SRB Measures , 2007 .
[3] Anton Zorich. Flat Surfaces , 2006 .
[4] Yakov Pesin,et al. Nonuniform Hyperbolicity: General Hyperbolic Measures , 2007 .
[5] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[6] R. Llave,et al. Smooth Ergodic Theory and Its Applications , 2001 .
[7] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[8] Artur Avila,et al. Exponential mixing for the Teichmüller flow , 2005 .
[9] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[10] Michael Shub,et al. Ergodic elements of ergodic actions , 1971 .
[11] K. Ball. An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .
[12] R. Mañé,et al. Ergodic Theory and Differentiable Dynamics , 1986 .
[13] Giovanni Forni. Deviation of ergodic averages for area-preserving flows on surfaces of higher genus , 2002 .
[14] L. Barreira,et al. Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents , 2007 .
[15] A. Eskin,et al. Invariant and stationary measures for the SL(2,R) action on Moduli space , 2013, 1302.3320.
[16] P. Walters. Ergodic Theory and Differentiable Dynamics By Ricardo Mañé: Translated from the Portuguese by Silvio Levy. Ergebnisse de Mathematik und ihrer Grenzgebiete, 3 Folge-Band 8. Springer-Verlag 1987. , 1989, Ergodic Theory and Dynamical Systems.
[17] A. Eskin,et al. Every flat surface is Birkhoff and Oseledets generic in almost every direction , 2013, 1305.1104.
[18] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[19] A. Avila,et al. Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow , 2010, 1011.5472.