On Hölder‐continuity of Oseledets subspaces

For Hoelder cocycles over a Lipschitz base transformation, possibly non-invertible, we show that the subbundles given by the Oseledets Theorem are Hoelder-continuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichmueller flow on the moduli space of abelian differentials. Following a recent result of Chaika-Eskin, our results also extend to any given Teichmueller disk.

[1]  A. Eskin,et al.  Isolation, equidistribution, and orbit closures for the SL(2,R) action on Moduli space , 2013, 1305.3015.

[2]  Yakov Pesin,et al.  Nonuniform Hyperbolicity: Ergodic Theory of Smooth and SRB Measures , 2007 .

[3]  Anton Zorich Flat Surfaces , 2006 .

[4]  Yakov Pesin,et al.  Nonuniform Hyperbolicity: General Hyperbolic Measures , 2007 .

[5]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[6]  R. Llave,et al.  Smooth Ergodic Theory and Its Applications , 2001 .

[7]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[8]  Artur Avila,et al.  Exponential mixing for the Teichmüller flow , 2005 .

[9]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[10]  Michael Shub,et al.  Ergodic elements of ergodic actions , 1971 .

[11]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[12]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[13]  Giovanni Forni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus , 2002 .

[14]  L. Barreira,et al.  Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents , 2007 .

[15]  A. Eskin,et al.  Invariant and stationary measures for the SL(2,R) action on Moduli space , 2013, 1302.3320.

[16]  P. Walters Ergodic Theory and Differentiable Dynamics By Ricardo Mañé: Translated from the Portuguese by Silvio Levy. Ergebnisse de Mathematik und ihrer Grenzgebiete, 3 Folge-Band 8. Springer-Verlag 1987. , 1989, Ergodic Theory and Dynamical Systems.

[17]  A. Eskin,et al.  Every flat surface is Birkhoff and Oseledets generic in almost every direction , 2013, 1305.1104.

[18]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[19]  A. Avila,et al.  Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow , 2010, 1011.5472.