Stable super-resolution limit and smallest singular value of restricted Fourier matrices

Super-resolution refers to the process of recovering the locations and amplitudes of a collection of point sources, represented as a discrete measure, given $M+1$ of its noisy low-frequency Fourier coefficients. The recovery process is highly sensitive to noise whenever the distance $\Delta$ between the two closest point sources is less than $1/M$. This paper studies the {\it fundamental difficulty of super-resolution} and the {\it performance guarantees of a subspace method called MUSIC} in the regime that $\Delta<1/M$. The most important quantity in our theory is the minimum singular value of the Vandermonde matrix whose nodes are specified by the source locations. Under the assumption that the nodes are closely spaced within several well-separated clumps, we derive a sharp and non-asymptotic lower bound for this quantity. Our estimate is given as a weighted $\ell^2$ sum, where each term only depends on the configuration of each individual clump. This implies that, as the noise increases, the super-resolution capability of MUSIC degrades according to a power law where the exponent depends on the cardinality of the largest clump. Numerical experiments validate our theoretical bounds for the minimum singular value and the resolution limit of MUSIC. When there are $S$ point sources located on a grid with spacing $1/N$, the fundamental difficulty of super-resolution can be quantitatively characterized by a min-max error, which is the reconstruction error incurred by the best possible algorithm in the worst-case scenario. We show that the min-max error is closely related to the minimum singular value of Vandermonde matrices, and we provide a non-asymptotic and sharp estimate for the min-max error, where the dominant term is $(N/M)^{2S-1}$.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[3]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[4]  Giuseppe Franzè,et al.  Rectangular Vandermonde Matrices on Chebyshev Nodes , 2001 .

[5]  Wenjing Liao,et al.  MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution , 2015, IEEE Transactions on Signal Processing.

[6]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[7]  Wenjing Liao,et al.  Mismatch and resolution in compressive imaging , 2011, Optical Engineering + Applications.

[8]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[9]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[10]  Philip A. Whiting,et al.  Asymptotic Behavior of the Maximum and Minimum Singular Value of Random Vandermonde Matrices , 2012, ArXiv.

[11]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[12]  Paolo Pugliese,et al.  Vandermonde matrices on integer nodes: the rectangular case , 2001, Numerische Mathematik.

[13]  Laurent Demanet,et al.  The recoverability limit for superresolution via sparsity , 2015, ArXiv.

[14]  Walter Galitschi,et al.  On inverses of Vandermonde and confluent Vandermonde matrices , 1962 .

[15]  Mérouane Debbah,et al.  Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle , 2008, 0802.3570.

[16]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[17]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[18]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[19]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[20]  Weilin Li Elementary L∞ error estimates for super-resolution de-noising , 2017, ArXiv.

[21]  Fermín S. Viloche Bazán,et al.  Conditioning of Rectangular Vandermonde Matrices with Nodes in the Unit Disk , 1999, SIAM J. Matrix Anal. Appl..

[22]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[23]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[24]  Paulo J. S. G. Ferreira,et al.  SUPERRESOLUTION, THE RECOVERY OF MISSING SAMPLES, AND VANDERMONDE MATRICES ON THE UNIT CIRCLE , 1999 .

[25]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[26]  J. Benedetto,et al.  Super-resolution by means of Beurling minimal extrapolation , 2016, Applied and Computational Harmonic Analysis.

[27]  Gabriel Peyré,et al.  Support Recovery for Sparse Super-Resolution of Positive Measures , 2017 .

[28]  Imre Z. Ruzsa,et al.  On Uniformly Distributed Dilates of Finite Integer Sequences , 2000 .

[29]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[30]  Helmut Bölcskei,et al.  Vandermonde Matrices with Nodes in the Unit Disk and the Large Sieve , 2017, Applied and Computational Harmonic Analysis.

[31]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[32]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[33]  Albert Fannjiang,et al.  Compressive Sensing Theory for Optical Systems Described by a Continuous Model , 2015, 1507.00794.

[34]  Ren-Cang Li,et al.  Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..

[35]  Laurent Demanet,et al.  Stability of partial Fourier matrices with clustered nodes , 2018, ArXiv.

[36]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[37]  N. Alon,et al.  Uniform dilations , 1992 .

[38]  Bernhard Beckermann,et al.  The condition number of real Vandermonde, Krylov and positive definite Hankel matrices , 2000, Numerische Mathematik.

[39]  Philip A. Whiting,et al.  Eigenvalue Results for Large Scale Random Vandermonde Matrices With Unit Complex Entries , 2010, IEEE Transactions on Information Theory.

[40]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[41]  D. Donoho Superresolution via sparsity constraints , 1992 .

[42]  Albert Fannjiang,et al.  The MUSIC algorithm for sparse objects: a compressed sensing analysis , 2010, ArXiv.

[43]  J. Vaaler SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .

[44]  Albert Fannjiang,et al.  Compressive Spectral Estimation with Single-Snapshot ESPRIT: Stability and Resolution , 2016, ArXiv.

[45]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[46]  Arie Feuer,et al.  On perfect conditioning of Vandermonde matrices on the unit circle , 2007 .

[47]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[48]  Ismail Sahar,et al.  Super-Resolution , 2014, Encyclopedia of Biometrics.

[49]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[50]  Adriaan van den Bos,et al.  Resolution: a survey , 1997 .

[51]  H. Montgomery,et al.  Hilbert’s inequality , 1974 .

[52]  Helmut Bölcskei,et al.  Deterministic performance analysis of subspace methods for cisoid parameter estimation , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[53]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[54]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[55]  W. Gautschi,et al.  Lower bounds for the condition number of Vandermonde matrices , 1987 .

[56]  Emmanuel J. Candès,et al.  Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..

[57]  A. Fannjiang,et al.  Compressive inverse scattering: I. High-frequency SIMO/MISO and MIMO measurements , 2009, 0906.5405.

[58]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..