Graph-based linear scaling electronic structure theory.

We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

[1]  Joost VandeVondele,et al.  Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase. , 2012, Journal of chemical theory and computation.

[2]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[3]  A M N Niklasson,et al.  Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics. , 2015, Journal of chemical theory and computation.

[4]  Emanuel H. Rubensson,et al.  A hierarchic sparse matrix data structure for large‐scale Hartree‐Fock/Kohn‐Sham calculations , 2007, J. Comput. Chem..

[5]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[6]  Anders M N Niklasson,et al.  Extended Born-Oppenheimer molecular dynamics. , 2008, Physical review letters.

[7]  Matt Challacombe,et al.  Time-reversible Born-Oppenheimer molecular dynamics. , 2006, Physical review letters.

[8]  A. Holas Transforms for idempotency purification of density matrices in linear-scaling electronic-structure calculations , 2001 .

[9]  Emanuel H. Rubensson,et al.  Assessment of density matrix methods for linear scaling electronic structure calculations , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Anders M N Niklasson,et al.  Generalized extended Lagrangian Born-Oppenheimer molecular dynamics. , 2014, The Journal of chemical physics.

[11]  Feng Long Gu,et al.  Band structure built from oligomer calculations. , 2008, The Journal of chemical physics.

[12]  Anders M N Niklasson,et al.  Energy conserving, linear scaling Born-Oppenheimer molecular dynamics. , 2012, The Journal of chemical physics.

[13]  Walter Kohn,et al.  THEORY OF THE INSULATING STATE , 1964 .

[14]  John R. Gilbert,et al.  Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments , 2011, SIAM J. Sci. Comput..

[15]  A. Nakano,et al.  Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications , 2008 .

[16]  Bálint Aradi,et al.  Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids. , 2015, Journal of chemical theory and computation.

[17]  Alessandro Curioni,et al.  Semiempirical Molecular Dynamics (SEMD) I: Midpoint-Based Parallel Sparse Matrix-Matrix Multiplication Algorithm for Matrices with Decay. , 2015, Journal of chemical theory and computation.

[18]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[19]  Peter Pulay,et al.  Fock matrix dynamics , 2004 .

[20]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[21]  Anders M N Niklasson,et al.  First principles molecular dynamics without self-consistent field optimization. , 2013, The Journal of chemical physics.

[22]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[23]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[24]  Anders M.N. Niklasson Implicit purification for temperature-dependent density matrices , 2003 .

[25]  Priya Vashishta,et al.  A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations. , 2014, The Journal of chemical physics.

[26]  Sihong Shao,et al.  Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics , 2013, Entropy.

[27]  Jürg Hutter,et al.  Car–Parrinello molecular dynamics , 2012 .

[28]  Paul G. Mezey,et al.  Molecular electron density lego approach to molecule building , 1993 .

[29]  Emanuel H. Rubensson,et al.  Nonmonotonic Recursive Polynomial Expansions for Linear Scaling Calculation of the Density Matrix. , 2010, Journal of chemical theory and computation.

[30]  D. York,et al.  Linear‐scaling semiempirical quantum calculations for macromolecules , 1996 .

[31]  Nevill Mott,et al.  The transition to the metallic state , 1961 .

[32]  Masato Kobayashi,et al.  Reconsidering an analytical gradient expression within a divide-and-conquer self-consistent field approach: exact formula and its approximate treatment. , 2011, The Journal of chemical physics.

[33]  R. Silver,et al.  DENSITIES OF STATES OF MEGA-DIMENSIONAL HAMILTONIAN MATRICES , 1994 .

[34]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[35]  Joost VandeVondele,et al.  Sparse matrix multiplication: The distributed block-compressed sparse row library , 2014, Parallel Comput..

[36]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[37]  Matthias Krack,et al.  Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. , 2007, Physical review letters.

[38]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[39]  Phanish Suryanarayana,et al.  Optimized purification for density matrix calculation , 2013 .

[40]  Emanuel H. Rubensson,et al.  Interior Eigenvalues from Density Matrix Expansions in Quantum Mechanical Molecular Dynamics , 2014, SIAM J. Sci. Comput..

[41]  M. Challacombe A general parallel sparse-blocked matrix multiply for linear scaling SCF theory , 2000 .

[42]  Michiaki Arita,et al.  Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10000+ Atoms. , 2014, Journal of chemical theory and computation.

[43]  Eiji Tsuchida,et al.  Ab initio molecular dynamics simulations with linear scaling: application to liquid ethanol , 2008 .

[44]  Martin Karplus,et al.  Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method. , 2011, The Journal of chemical physics.

[45]  Anders M. N. Niklasson,et al.  Wave function extended Lagrangian Born-Oppenheimer molecular dynamics , 2010 .

[46]  Yihan Shao,et al.  Improved Fermi operator expansion methods for fast electronic structure calculations , 2003 .

[47]  John M Herbert,et al.  Accelerated, energy-conserving Born-Oppenheimer molecular dynamics via Fock matrix extrapolation. , 2005, Physical chemistry chemical physics : PCCP.

[48]  Fred G. Gustavson,et al.  Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition , 1978, TOMS.

[49]  Laxmikant V. Kalé,et al.  Solvers for O (N) Electronic Structure in the Strong Scaling Limit , 2014, SIAM J. Sci. Comput..

[50]  Colombo,et al.  Efficient linear scaling algorithm for tight-binding molecular dynamics. , 1994, Physical review letters.

[51]  Taisuke Ozaki O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations , 2006 .

[52]  D R Bowler,et al.  Calculations for millions of atoms with density functional theory: linear scaling shows its potential , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[53]  R. Mcweeny,et al.  The density matrix in self-consistent field theory I. Iterative construction of the density matrix , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[55]  Hristo Djidjev,et al.  Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics , 2016 .

[56]  Darrin M. York,et al.  Quantum Mechanical Treatment of Biological Macromolecules in Solution Using Linear-Scaling Electronic Structure Methods , 1998 .

[57]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[58]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[59]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[60]  Valéry Weber,et al.  Ab initio linear scaling response theory: electric polarizability by perturbed projection. , 2004, Physical review letters.

[61]  D. Remler,et al.  Molecular dynamics without effective potentials via the Car-Parrinello approach , 1990 .

[62]  Johansson,et al.  Order-N Green's function technique for local environment effects in alloys. , 1996, Physical review letters.

[63]  Michael Methfessel,et al.  Crystal structures of zirconia from first principles and self-consistent tight binding , 1998 .

[64]  Matt Challacombe,et al.  Density matrix perturbation theory. , 2003, Physical review letters.