The Disjoint Paths Problem: Algorithm and Structure

[1]  P. Mani,et al.  On the Existence of Certain Configurations within Graphs and the 1‐Skeletons of Polytopes , 1970 .

[2]  H. Jung Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen , 1970 .

[3]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[4]  B. Bollobás Surveys in Combinatorics , 1979 .

[5]  Carsten Thomassen,et al.  2-Linked Graphs , 1980, Eur. J. Comb..

[6]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[7]  Alexander Schrijver,et al.  Paths, Flows, and VLSI-Layout , 1990 .

[8]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[9]  Éva Tardos,et al.  Approximations for the disjoint paths problem in high-diameter planar networks , 1995, STOC '95.

[10]  Éva Tardos,et al.  Disjoint paths in densely embedded graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[11]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[12]  Béla Bollobás,et al.  Highly linked graphs , 1996, Comb..

[13]  B. Reed Surveys in Combinatorics, 1997: Tree Width and Tangles: A New Connectivity Measure and Some Applications , 1997 .

[14]  Aravind Srinivasan,et al.  Improved approximations for edge-disjoint paths, unsplittable flow, and related routing problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[15]  Clifford Stein,et al.  Improved approximation algorithms for unsplittable flow problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[16]  Jon M. Kleinberg,et al.  Decision algorithms for unsplittable flow and the half-disjoint paths problem , 1998, STOC '98.

[17]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[18]  Venkatesan Guruswami,et al.  Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems , 2003, J. Comput. Syst. Sci..

[19]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[20]  Sanjeev Khanna,et al.  The all-or-nothing multicommodity flow problem , 2004, STOC '04.

[21]  Jon M. Kleinberg,et al.  An approximation algorithm for the disjoint paths problem in even-degree planar graphs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[22]  Sanjeev Khanna,et al.  Multicommodity flow, well-linked terminals, and routing problems , 2005, STOC '05.

[23]  Lisa Zhang,et al.  Hardness of the undirected edge-disjoint paths problem with congestion , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[24]  Paul Wollan,et al.  An improved linear edge bound for graph linkages , 2005, Eur. J. Comb..

[25]  Sanjeev Khanna,et al.  Hardness of the Undirected Edge-Disjoint Paths Problem with Congestion , 2005, FOCS.

[26]  Sanjeev Khanna,et al.  An O(sqrt(n)) Approximation and Integrality Gap for Disjoint Paths and Unsplittable Flow , 2006, Theory Comput..

[27]  Bruce A. Reed,et al.  A nearly linear time algorithm for the half integral disjoint paths packing , 2008, SODA '08.

[28]  Ken-ichi Kawarabayashi,et al.  An O(logn)-Approximation Algorithm for the Disjoint Paths Problem in Eulerian Planar Graphs and 4-Edge-Connected Planar Graphs , 2010, APPROX-RANDOM.

[29]  Matthew Andrews,et al.  Approximation Algorithms for the Edge-Disjoint Paths Problem via Raecke Decompositions , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[30]  Ken-ichi Kawarabayashi,et al.  The edge-disjoint paths problem in Eulerian graphs and 4-edge-connected graphs , 2010, SODA '10.

[31]  Satish Rao,et al.  Edge Disjoint Paths in Moderately Connected Graphs , 2006, SIAM J. Comput..

[32]  Paul Wollan,et al.  A shorter proof of the graph minor algorithm: the unique linkage theorem , 2010, STOC '10.

[33]  Ken-ichi Kawarabayashi,et al.  Improved Algorithm for the Half-Disjoint Paths Problem , 2010, APPROX-RANDOM.

[34]  Ken-ichi Kawarabayashi,et al.  An Improved Algorithm for the Half-Disjoint Paths Problem , 2011, SIAM J. Discret. Math..

[35]  Sorin C. Popescu,et al.  Lidar Remote Sensing , 2011 .

[36]  Bruce A. Reed,et al.  The disjoint paths problem in quadratic time , 2012, J. Comb. Theory, Ser. B.